Re: Year 11 Mathematics 3 Unit Cambridge Question & Answer Thread
How do you answer q 19)
Find the points where the line x + 2y = 4 cuts the parabola y = ( x -1)^2, and show that the line is the normal to the curve at one of these points.
I made x = 4 - 2y
and subbed it in to the parabola and got:
4y^2 - 13y + 9 = 0
(4y - 9) (y -1) = 0
Therefore points are ( 2,1) and the second point I am not sure: when I sub y = 9/4 into the parabola I get x = 5/2 but when into the line x = 8/9
Not sure why I am getting different results. And how to show that at one of these points the line is the normal to the curve.
<a href="http://www.codecogs.com/eqnedit.php?latex=x&space;+&space;2y&space;=&space;4&space;\\&space;y&space;=&space;(x-1)^{2}&space;\\&space;\\&space;x&space;+&space;2(x^{2}-2x+1)&space;=&space;4&space;\\&space;x&space;+&space;2x^{2}&space;-4x+-2=0&space;\\&space;2x^{2}-3x-2=0&space;\\(2x+1)(x-2)&space;=&space;0" target="_blank"><img src="http://latex.codecogs.com/gif.latex?x&space;+&space;2y&space;=&space;4&space;\\&space;y&space;=&space;(x-1)^{2}&space;\\&space;\\&space;x&space;+&space;2(x^{2}-2x+1)&space;=&space;4&space;\\&space;x&space;+&space;2x^{2}&space;-4x+-2=0&space;\\&space;2x^{2}-3x-2=0&space;\\(2x+1)(x-2)&space;=&space;0" title="x + 2y = 4 \\ y = (x-1)^{2} \\ \\ x + 2(x^{2}-2x+1) = 4 \\ x + 2x^{2} -4x+-2=0 \\ 2x^{2}-3x-2=0 \\(2x+1)(x-2) = 0" /></a>
Points of intersection are (2,1) and (-1/2, 9/4)
Now
<a href="http://www.codecogs.com/eqnedit.php?latex=y&space;=&space;(x-1)^{2}&space;\\&space;y'&space;=&space;2(x-1)&space;\\&space;\text{sub&space;x&space;=&space;2,&space;gradient&space;of&space;tangent&space;to&space;the&space;curve&space;is&space;2.}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?y&space;=&space;(x-1)^{2}&space;\\&space;y'&space;=&space;2(x-1)&space;\\&space;\text{sub&space;x&space;=&space;2,&space;gradient&space;of&space;tangent&space;to&space;the&space;curve&space;is&space;2.}" title="y = (x-1)^{2} \\ y' = 2(x-1) \\ \text{sub x = 2, gradient of tangent to the curve is 2.}" /></a>
Therefore gradient of normal to the curve is <a href="http://www.codecogs.com/eqnedit.php?latex=\frac{-1}{2}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\frac{-1}{2}" title="\frac{-1}{2}" /></a> which is the gradient of the line. Hence line is normal to curve at (2,1)