$Let $\displaystyle a_{n} = n+\frac{1}{n}$ for $n=1,2,3,4,....20$ and $p=\frac{1}{20}\sum^{20}_{n=1}a_{n}$
$And $q = \frac{1}{20}\sum^{20}_{n=1}\frac{1}{a_{n}}$. Then proving $q\in \left(0,\frac{21-p}{21}\right)$.
Trial p = \frac{1}{20}\left((1+2+3+\cdot +20)+1+\frac{1}{2}+\frac{1}{3}+\cdots...