1. A=2, B=1, C=-2 by cross multiplying, then substituting x=4 which gets the A value, after which B and C come easily
2. K-funk's method is the straightforward HSC method that should be used in exams. If you want to, you can do it without induction (only do this in an exam if you have a ton of spare time lol)
u<sub>n</sub> = 4u<sub>n-1</sub> - 4u<sub>n-2
</sub> u<sub>n</sub>-2u<sub>n-1</sub>= 2u<sub>n-1</sub> - 4u<sub>n-2</sub>=2(u<sub>n-1</sub>-2u<sub>n-2</sub>)
u<sub>n-1</sub>-2u<sub>n-2</sub>=2(u<sub>n-2</sub>-2u<sub>n-3</sub>)
...
u<sub>3</sub>-2u<sub>2</sub>=2(20-16)=2<sup>3</sup>
From above, by repeatedly substituting the lhs into the rhs of the equation above it,
u<sub>n</sub>-2u<sub>n-1</sub>=2<sup>n</sup>
Dividing both sides by 2<sup>k-1 </sup>gives
(u<sub>n</sub>/2<sup>n</sup>)-(u<sub>n-1</sub>/2<sup>n-1</sup>)=1
(u<sub>n-1</sub>/2<sup>n-1</sup>)-(u<sub>n-2</sub>/2<sup>n-2</sup>)=1
...
(u<sub>2</sub>/2<sup>2</sup>)-(u<sub>1</sub>/2)=1
Adding the above equations,
(u<sub>n</sub>/2<sup>n</sup>)-(u<sub>1</sub>/2)=n-2
u<sub>n</sub>/2<sup>n</sup>=n+3
u<sub>n</sub>=2<sup>n</sup>(n+3)
<sup>
</sup><sub></sub><sub></sub><sub></sub>