t1 = nC1
t2=nC2
t3=nC3
for arithmetic progression, nC2-nC1=nC3-nC2
2(nC2)=nC3+nC1
2(n!/[2!(n-2)!]=n!/3!(n-3)! + n!/(n-1)!
simplifying..
n(n-1)=n(n-1)(n-2)/6 + n
since n=/=0
n-1=(n-1)(n-2)/6+1
multiplying by 6
6n-6=n2-3n+2+6
n2-9n+14=0
(n-7)(n-2)=0
n=7 or n=2 but n>2
so, n=7