x(1+x)n = x(nC0 + nC1 x + nC2 x2 + ... + nCn xn)
x(1+x)n = (nC0x + nC1 x2 + nC2 x3 + ... + nCn xn+1)
d/dx x(1+x)n = d/dx (nC0x + nC1 x2 + nC2 x3 + ... + nCn xn+1)
(1+x)n + nx(1+x)n-1 = 1*nC0 + 2*nC1 x + 3*nC2 x2 + ... + (n+1)*nCn xn
Let x = 1:
2n + n2n-1 = 1*nC0 + 2*nC1 + 3*nC2 + ... + (n+1)*nCn
2n-1(2 + n) = 1*nC0 + 2*nC1 + 3*nC2 + ... + (n+1)*nCn
Hence sum(r = 0 to n) (r+1) nCr = 2n-1(n + 2)