SB257426
Very Important User
The question was asking: Prove the following statement using either direct or contrapositive proof: If n is an integer then 4 does not divide n^2-3
Here is my working out:
let n^2 - 3 = 4m
By way of contradiction assume n^2 - 3 is rational, ie; n^2 - 3 = a/b (BTW in the funky looking expression for n the square root sign is not supposed to be over the 1/sqrt(p))
Once again by way of contradiction, assume sqrt(p) is rational:
Any help would be appreciated
Here is my working out:
let n^2 - 3 = 4m
By way of contradiction assume n^2 - 3 is rational, ie; n^2 - 3 = a/b (BTW in the funky looking expression for n the square root sign is not supposed to be over the 1/sqrt(p))
Once again by way of contradiction, assume sqrt(p) is rational:
Any help would be appreciated