Well first of all it should be:
1 + 2 + 4 + ..... + 2<sup>n - 1</sup> = 2<sup>n</sup> - 1
Step 1 - Obvious...
LHS = 1
RHS = 2 - 1
= 1
LHS = RHS, hence true for n = 1
Step 2 - Assume the statement is true for n = k
1 + 2 + 4 + ..... + 2<sup>k - 1</sup> = 2<sup>k</sup> - 1
Step 3 - Prove it is true for n = k + 1
1 + 2 + 4 + ..... + 2<sup>k</sup> = 2<sup>k + 1</sup> - 1
LHS = 1 + 2 + 4 + ..... + 2<sup>k</sup>
= [1 + 2 + 4 + ..... + 2<sup>k - 1</sup>] + 2<sup>k</sup>
= 2<sup>k</sup> - 1 + 2<sup>k</sup> by assumption
= 2.2<sup>k</sup> - 1
= 2<sup>k + 1</sup> - 1
= RHS
Then insert conclusion...