I don't see a t substitution!
let I = ∫ cot(a/2) da ?
let t=tan(a/2)
dt/da = 0.5sec
2(a/2)=(t
2+1)/2
da = 2dt / (t
2+1)
therefore I = 2 ∫ dt/t(t
2+1)
let n=t
2+1
dt=dn/(2(n-1)
0.5)
therefore I = ∫ dn/n(n-1)
= - ∫ dn/(0.25-(n-0.5)
2)
= -ln|(0.25+(n-0.5))/(0.25-(n-0.5))| + C
= -ln|(4n-1)/(3-4n)| + C
= -ln|(4t
2+3)/(4t
2+1)| + C
= -ln|(4tan
2(a/2)+3)/(4tan
2(a/2)+1)| + C
/ I = ln(1-2/(4tan
2(a/2)+3)) + C .... {a/=(2.n+1).pi/2, n=0,1,2,3..}
\ I = C .... {a=(2.n+1).pi/2, n=0,1,2,3..}
makes an interesting approximation of log|sin(a/2)| + C