Mathematical Induction (1 Viewer)

mazza_728

Manda xoxo
Joined
Jun 2, 2003
Messages
755
Location
Sydney - Sutherland Shire
Gender
Female
HSC
2004
hey guys, i cant seem to prove this:
1x2^0+2x2^1+3x2^2+....+nx2^(n-1) = 1+(n-1)2^n

Ok the line im stuck on is LHS=1+(k-1)2^k+(k+1)2^k i need to prove that this
= 1+kx2^(k+1)

This question is from 1986 HSC Question 7 i) if anyone has this paper and has finished it... how did you do Question 7 ii)??
??
any help would be great
thanks xoxo
 
Last edited:

Xayma

Lacking creativity
Joined
Sep 6, 2003
Messages
5,953
Gender
Undisclosed
HSC
N/A
Ok for the full induction:

Let n=1
LHS=1
RHS=1+0*2<sup>1</sup>
=LHS

&there4; true for n=1.

Assume true for n=k

1*2<sup>0</sup>+2*2<sup>1</sup>+3*2<sup>2</sup>+......+k*2<sup>k-1</sup>=1+(k-1)2<sup>k</sup>

Prove true for n=k+1

1*2<sup>0</sup>+2*2<sup>1</sup>+3*2<sup>2</sup>+......+k*2<sup>k-1</sup>+(k+1)*2<sup>k</sup>=1+(k-1)2<sup>k</sup>+(k+1)*2<sup>k</sup>

RHS=1+(k-1)*2<sup>k</sup>+(k+1)*2<sup>k</sup>
=1+2<sup>k</sup>(k-1+k+1)
=1+2<sup>k</sup>(2k)
=1+k*2*2<sup>k</sup>
=1+k*2<sup>k+1</sup>

&there4; true for n=k+1 and since true for n=1, true for n=2,3,4.... and for all n&ge;1.

ii) a)
The height of the trapezium can be found to Lsin&theta; (as the upper angles are &theta; (alternate angles ll lines).

By forming triangles and a square the length of the top can be found to be L+2Lcos&theta;

&there4; Area=1/2(2L+2Lcos&theta;.)Lsin&theta;
=L<sup>2</sup>(1+cos&theta;.)sin&theta;

b) dA/d&theta;=L<sup>2</sup>[(1+cos&theta;.).cos&theta;+sin&theta;.-sin&theta;]
=L<sup>2</sup>[cos&theta;+cos<sup>2</sup>&theta;-sin<sup>2</sup>&theta;]
=L<sup>2</sup>[cos&theta;+cos2&theta;]
For stat dA/d&theta;=0
cos&theta;+cos2&theta;=0
cos&theta;+2cos<sup>2</sup>&theta;-1=0
(2cos&theta;-1)(cos&theta;+1)=0
cos&theta;=-1 OR cos&theta;=1/2
&theta;=&pi; OR cos&theta;=&pi;/3

Now the first answer is beyond the range.

From here just test concavity to show that &theta;=&pi;/3 gives a max.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top