z1 + z2 = - 1 - i
z1 * z2 = 2i
Thus
arg(z1) + arg(z2) = arg(z1 * z2) = arg(2i) = pi/2
I don't appreciate the question's need to express them in mod-arg form, but if we must:
z^2 + (1+i)z + 2i = 0
using the quadratic formula:
z = (-b + Sqrt[b2 - 4ac])/(2a)
where a = 1, b = 1 + i, c = 2i
Also, you might notice that b2 = c
Thus:
2z = - 1 - i + Sqrt[(1 + i)2 - 8i]
Note: Sqrt[(1 + i)2 - 8i] = Sqrt[2i - 8i] = Sqrt[-6i]
-6i = 6cis[-pi/2]
Sqrt[-6i] = Sqrt[6]cis[-pi/4] = Sqrt[3] * Sqrt[2]cis[-pi/4] = Sqrt[3] * (1 - i)
So we have:
2z = - 1 - i + Sqrt[3] * (1 - i)
= - 1 - i + (-i)Sqrt[3] * (i + 1) [multiplying the sqrt by -i, and the inside of the bracket by i]
= (1 + i)(-1 + (-i)Sqrt[3])
=-(1 + i)(1 + iSqrt[3])
2z = cis(pi) * Sqrt[2]cis(pi/4) * 2 * cis(+ pi/3)
z = Sqrt[2] * cis(5pi/4 + pi/3)
Thus:
z1 = Sqrt[2] * cis(5pi/4 + pi/3) = Sqrt[2] * cis(19pi/12)
z2 = Sqrt[2] * cis(5pi/4 - pi/3) = Sqrt[2] * cis(11pi/12)
EDIT: I found the problem, the arg of 1 + i is pi/4 not pi/2
Thus the args add to:
30pi/12 = 2pi + pi/2 [as required]
And the moduli of both are Sqrt[2]