I think the statement in (i) is incorrect. Subbing in a few numbers in a calculator shows they do not equal.azureus88 said:Prove that:
(i) (n+1)P(r) = (n)P(r) + r[(n+1)P(r)]
(ii) (n)P(r) = (n-2)P(r) + 2r[(n-2)P(r-1)] + r(r-1)[(n-2)P(r-2)]
i have no idea on how to get around this question. plz help. thanks!
OMG! That's epic working out.Trebla said:I think the statement in (i) is incorrect. Subbing in a few numbers in a calculator shows they do not equal.
(ii) Use the definition: nPr = n! / (n - r)!
RHS = n - 2Pr + 2r.n - 2Pr - 1 + r(r - 1)n - 2Pr - 2
= (n - 2)! / (n - 2 - r)! + 2r.(n - 2)! / (n - 2 - (r - 1))! + r(r - 1).(n - 2)! / (n - 2 - (r - 2))!
= (n - 2)! / (n - 2 - r)! + 2r.(n - 2)! / (n - 1 - r)! + r(r - 1).(n - 2)! / (n - r)!
= {(n - 2)!(n - 1 - r)(n - r) + 2r.(n - 2)!(n - r) + r(r - 1).(n - 2)!} / (n - r)!
= (n - 2)! {(n - 1 - r)(n - r) + 2r(n - r) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n - 1 - r + 2r) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n + r - 1) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n + r) - (n - r) + r(r - 1)} / (n - r)!
= (n - 2)! {n² - r² - n + r + r² - r} / (n - r)!
= (n - 2)! {n² - n} / (n - r)!
= (n - 2)!(n - 1)n / (n - r)!
= n! / (n - r)!
= nPr
= LHS
Trebla said:I think the statement in (i) is incorrect. Subbing in a few numbers in a calculator shows they do not equal.
(ii) Use the definition: nPr = n! / (n - r)!
RHS = n - 2Pr + 2r.n - 2Pr - 1 + r(r - 1)n - 2Pr - 2
= (n - 2)! / (n - 2 - r)! + 2r.(n - 2)! / (n - 2 - (r - 1))! + r(r - 1).(n - 2)! / (n - 2 - (r - 2))!
= (n - 2)! / (n - 2 - r)! + 2r.(n - 2)! / (n - 1 - r)! + r(r - 1).(n - 2)! / (n - r)!
= {(n - 2)!(n - 1 - r)(n - r) + 2r.(n - 2)!(n - r) + r(r - 1).(n - 2)!} / (n - r)!
= (n - 2)! {(n - 1 - r)(n - r) + 2r(n - r) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n - 1 - r + 2r) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n + r - 1) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n + r) - (n - r) + r(r - 1)} / (n - r)!
= (n - 2)! {n² - r² - n + r + r² - r} / (n - r)!
= (n - 2)! {n² - n} / (n - r)!
= (n - 2)!(n - 1)n / (n - r)!
= n! / (n - r)!
= nPr
= LHS
ok the question is:Trebla said:I'm not quite sure what you mean...
n ways?azureus88 said:ok the question is:
How many ways can n distinct objects be arranged so that none of the n objects appear in their orignial positions? For example, 4123 is a derangement of 1234 but 4132 isnt considered one because the 3 is in its original position.
You're really gun at maths. I'll give out thatTrebla said:I think the statement in (i) is incorrect. Subbing in a few numbers in a calculator shows they do not equal.
(ii) Use the definition: nPr = n! / (n - r)!
RHS = n - 2Pr + 2r.n - 2Pr - 1 + r(r - 1)n - 2Pr - 2
= (n - 2)! / (n - 2 - r)! + 2r.(n - 2)! / (n - 2 - (r - 1))! + r(r - 1).(n - 2)! / (n - 2 - (r - 2))!
= (n - 2)! / (n - 2 - r)! + 2r.(n - 2)! / (n - 1 - r)! + r(r - 1).(n - 2)! / (n - r)!
= {(n - 2)!(n - 1 - r)(n - r) + 2r.(n - 2)!(n - r) + r(r - 1).(n - 2)!} / (n - r)!
= (n - 2)! {(n - 1 - r)(n - r) + 2r(n - r) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n - 1 - r + 2r) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n + r - 1) + r(r - 1)} / (n - r)!
= (n - 2)! {(n - r)(n + r) - (n - r) + r(r - 1)} / (n - r)!
= (n - 2)! {n² - r² - n + r + r² - r} / (n - r)!
= (n - 2)! {n² - n} / (n - r)!
= (n - 2)!(n - 1)n / (n - r)!
= n! / (n - r)!
= nPr
= LHS
(can't confirm that this is actually correct)azureus88 said:ok the question is:
How many ways can n distinct objects be arranged so that none of the n objects appear in their orignial positions? For example, 4123 is a derangement of 1234 but 4132 isnt considered one because the 3 is in its original position.