Let z=cos@+i.sin@
z^5=(cos@+isin@)^5=cos5@+isin5@
Let cos@=c, sin@=s
z^5=(cos@+isin@)^5=c^5 + 5c^4.i.s + 10c^3.i^2.s^2 + 10c^2.i^3.s^3 + 5c.i^4.s^4 + s^5
Re(z^5)=cos5@=c^5 - 10c^3.s^2 + 5c.s^4
That is:
cos5@=cos^5(@) - 10cos^3(@)sin^2(@) + 5cos@sin^4(@)
cos5@=cos^5(@) - 10cos^3(@)(1-cos^2(@)) + 5cos@(1-cos^2(@))^2
cos5@=cos^5(@) - 10cos^3(@) + 10cos^5(@) + 5cos@-10cos^3(@)+5cos^5(@))
cos5@=16cos^5(@)-20cos^3(@)+5cos@
For 16x^5 - 20x^3 + 5x - 1 = 0,
16x^5 - 20x^3 + 5x = 1
Let x=cos@:
16cos^5(@)-20cos^3(@)+5cos@=1
.'. cos5@=1
So 5@=pi, 2pi, 3pi, 4pi, 5pi ...
@=pi/5, 2pi/5, 3pi/5, 4pi/5, 5pi/5
.'. roots of
16x^5 - 20x^3 + 5x - 1 = 0 are:
cos(pi/5), cos(2pi/5), cos(3pi/5), cos(4pi/5), cos(pi)
Go from there.