trig identity question (1 Viewer)

izi

Member
Joined
Aug 16, 2002
Messages
159
Gender
Female
HSC
2002
a) Prove: tan x - tan y / tan x + tan y = sin (x-y) / sin (x+y)


b) If 4 cos A + 3 = 0 and tan A > 0, find the exact value of:
(i) tan (A - 180 degrees)
(ii) cos (A + 90 degrees)

c) (i) Hence or otherwise prove that cos3Q = 4cos^3Q-3cosQ (Q is theata)
(ii) Solve 8cos^3Q - 6cosQ - /\3 = 0 for 0degrees < Q < 360degrees (/\ is square root)

thanx
 

Li0n

spiKu
Joined
Dec 28, 2002
Messages
953
Location
not telling
Gender
Female
HSC
2004
izi said:
a) Prove: tan x - tan y / tan x + tan y = sin (x-y) / sin (x+y)
RHS = (sinxcosy - cosxsiny)/sinxcosy + cosxsiny
LHS = (sinx/cosx - siny/cosy)/(sinx/cosx + siny/cosy)

= [(sinxcosy - cosxsiny)/cosxcosy] / [(sinxcosy + sinycosx)/cosxcosy]
cancel out the cosxcosy
:. = (sinxcosy - cosxsiny)/sinxcosy + cosxsiny
= RHS

ahh for the other two, i cbf + i should study english now :)
 

izi

Member
Joined
Aug 16, 2002
Messages
159
Gender
Female
HSC
2002
yes, izi is at uni. im her brother (class of 2005).
 

Funky_Junky

Member
Joined
Jun 26, 2003
Messages
299
Location
Locked inside the classroom
Gender
Female
HSC
2005
well i wrote out the full working out for question 3 coz typing it down got too complicated:confused: :confused:

left the last bit for you to do coz i can't be bothered to go and get a calculator...if you are still stuck lemme know and i will expand it for you.

-funky
 
Last edited:

Xayma

Lacking creativity
Joined
Sep 6, 2003
Messages
5,953
Gender
Undisclosed
HSC
N/A
izi said:
b) If 4 cos A + 3 = 0 and tan A > 0, find the exact value of:
(i) tan (A - 180 degrees)
(ii) cos (A + 90 degrees)

c) (i) Hence or otherwise prove that cos3Q = 4cos^3Q-3cosQ (Q is theata)
(ii) Solve 8cos^3Q - 6cosQ - /\3 = 0 for 0degrees < Q < 360degrees (/\ is square root)

thanx
b) i)cos A=-3/4
&there4; tan A=-&radic;7/-3
tan A=&radic; 7/3

&there4; tan (A-180&deg; )=tan A
=&radic; 7/3

ii) cos [A+90&deg;]=cos A*cos 90&deg;-sin A*sin 90&deg;
=-sin A
Now sin A=-&radic;7/4
&there4; cos[A+90&deg;]=&radic;7/4

c) i) cos 3&theta;=cos (2&theta;+&theta;.)
=cos 2&theta;cos&theta;-sin2&theta;*sin&theta;
=2cos<sup>3</sup>&theta;-cos&theta;-2sin<sup>2</sup>&theta;cos&theta;
=2cos<sup>3</sup>&theta;-cos&theta;-2(1-cos<sup>2</sup>&theta;.)cos&theta;
=4cos<sup>3</sup>&theta;-3cos&theta;

ii) You shouldn't need a calc from Funky Junky cos3&theta;=&radic;3/2
3&theta;=&pi;/6, 5&pi;/6, 7&pi;/6, 11&pi;/6, 13&pi;/6, 17&pi;/6
&theta;=&pi;/18, 5&pi;/18, 7&pi;/18, 11&pi;/18, 13&pi;/18, 17&pi;/18
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top