Result: (tan 2x - tan x) / (tan2x + cot x) = tan<sup>2</sup>x
Proof: LHS = (tan 2x - tan x) / (tan2x + cot x)
= {[2tan x / (1 - tan<sup>2</sup>x)] - tan x} / {[2tan x / (1 - tan<sup>2</sup>x)] + (1 / tan x)}
This is a quadruple decker fraction - yuk - so multiply top and bottom by tan x * (1 - tan<sup>2</sup>x)
= [2tan<sup>2</sup>x - tan<sup>2</sup>x(1 - tan<sup>2</sup>x)] / [2tan<sup>2</sup>x + (1 - tan<sup>2</sup>x)]
= tan<sup>2</sup>x(2 - 1 + tan<sup>2</sup>x) / (tan<sup>2</sup>x + 1)
= tan<sup>2</sup>x
= RHS
For the second result, the method should be the same - expand tan 2x as 2tan x / (1 - tan<sup>2</sup>x), multiply to get rid of quadruple decker fractions, and clean up.