trig q (1 Viewer)

shkspeare

wants 99uai
Joined
Jun 11, 2003
Messages
174
hi guys some1 help me out here

1) (tan2x-tanx) / (tan2x+cotx) = tan^2(x)
2) (1-tanxtan2x) / (1+tanxtan2x) = 4cos^2x-3

how to prove lhs = rhs here? thx !!
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,642
Gender
Male
HSC
N/A
Result: (tan 2x - tan x) / (tan2x + cot x) = tan<sup>2</sup>x

Proof: LHS = (tan 2x - tan x) / (tan2x + cot x)
= {[2tan x / (1 - tan<sup>2</sup>x)] - tan x} / {[2tan x / (1 - tan<sup>2</sup>x)] + (1 / tan x)}

This is a quadruple decker fraction - yuk - so multiply top and bottom by tan x * (1 - tan<sup>2</sup>x)

= [2tan<sup>2</sup>x - tan<sup>2</sup>x(1 - tan<sup>2</sup>x)] / [2tan<sup>2</sup>x + (1 - tan<sup>2</sup>x)]
= tan<sup>2</sup>x(2 - 1 + tan<sup>2</sup>x) / (tan<sup>2</sup>x + 1)
= tan<sup>2</sup>x
= RHS

For the second result, the method should be the same - expand tan 2x as 2tan x / (1 - tan<sup>2</sup>x), multiply to get rid of quadruple decker fractions, and clean up.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top