• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

yelp (1 Viewer)

jimmysmith560

Le Phénix Trilingue
Moderator
Joined
Aug 22, 2019
Messages
4,572
Location
Krak des Chevaliers
Gender
Male
HSC
2019
Uni Grad
2022
Would the following working help?

Given that the AM/GM inequality is true for n = k.

We have to prove that the inequality will be true for n = 2k.

That means we have to show: x1 + x2 + ... +x2k2k ≥ x1x2 ... x2k2k.

Since the inequality is true for n = k values. So if we take the first k values then we get:

x1 + x2 + ... + xkk ≥ x1x2 ... xkk .............(1).

Similarly for the last k values then we get: xk + 1 + xk + 2 + ... + x2kk ≥ xk + 1xk + 2 ... x2kk ..................(2).

Then we add (1) and (2):

x1 + x2 + ... + xkk + xk + 1 + xk + 2 + ... + x2kk ≥ x1x2 ... xkk + xk + 1xk + 2 ... x2kkx1 + x2 + ... + xk + xk + 1 + xk + 2 + ... + x2kk ≥ x1x2 ... xkk + xk + 1xk + 2 ... x2kkx1 + x2 + ... + x2kk ≥ x1x2 ... xkk + xk + 1xk + 2 ... x2kk ...............(3)

We know that:

a - b2 ≥ 0 or, a2 + b2 - 2ab ≥ 0 or, a2 + b2 ≥ 2ab ..............(4)

Let, a = x1x2 ... xk2k and b = xk + 1xk + 2 ... x2k2k

Using (4) we get:

x1x2 ... xk2k2 + xk + 1xk + 2 ... x2k2k2 ≥ 2x1x2 ... xk2kxk + 1xk + 2 ... x2k2k or, x1x2 ... xkk + xk + 1xk + 2 ... x2kk ≥ 2x1x2 ... xk2kxk + 1xk + 2 ... x2k2k

Note: p2k2 = p12k2 = p1k = pk or, x1x2 ... xkk + xk + 1xk + 2 ... x2kk ≥ 2x1x2 ... xkxk + 1xk + 2 ... x2k2k

Because mr · nr = mnr or, x1x2 ... xkk + xk + 1xk + 2 ... x2kk ≥ 2x1x2 ... x2k2k .................(5)

Combining (3) and (5) we get:

x1 + x2 + ... + x2kk ≥ x1x2 ... xkk + xk + 1xk + 2 ... x2kk ≥ 2x1x2 ... x2k2k or, x1 + x2 + ... + x2kk ≥ 2x1x2 ... x2k2k Removed middle partor, x1 + x2 + ... + x2k2k ≥ x1x2 ... x2k2k Divide both sides by 2

Hence, we have shown that, if the AM/GM inequality is true for n = k, then it will be true for n = 2k. [Proved (i)]
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top