• We are looking for markers for this year's BoS Maths Trials!
    Let us know before 31 August, see this thread for details

HSC 2012 MX2 Marathon (archive) (1 Viewer)

zeebobDD

Member
Joined
Oct 23, 2011
Messages
411
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Assume two people are playing a game with a Dice, X and Y, to determine the winner, the player who rolls a 6 first will win the game

If X starts rolling first, Find the probablility that X will win the game
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

How did you come by this answer?
|z - i| starts from 1 on the imaginary axis.

|z - 1| starts from 1 on the real axis.

Perpendicular bisector of the chord joining those two points is y = x

For |z - i| >= |z - 1|, has to be the region below and including y = x, therefore
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Assume two people are playing a game with a Dice, X and Y, to determine the winner, the player who rolls a 6 first will win the game

If X starts rolling first, Find the probablility that X will win the game
P(winning on first go) = 1/6

P(winning on second go) = 5/6 x 5/6 x 1/6

P(winning on third go) = 5/6 x 5/6 x 5/6 x 5/6 x 1/6

By continuing the trend and adding all the possible cases..

P(X winning) = 1/6 + 1/6 x (5/6)^2 + 1/6 x (5/6)^4 + ...

Common ratio of (5/6)^2 therefore it is a geometric progression.

=

 

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

|z - i| starts from 1 on the imaginary axis.

|z - 1| starts from 1 on the real axis.

Perpendicular bisector of the chord joining those two points is y = x

For |z - i| >= |z - 1|, has to be the region below and including y = x, therefore
Nice.

The reason why I asked is because as I was waiting for a MATH1001 (Differential Calculus) tutorial, I observed the tutor letting z=x+iy etc and had about half a board of working out before arriving at the same answer, which could have been acquired within a few seconds *after thinking for a bit*.
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Nice.

The reason why I asked is because as I was waiting for a MATH1001 (Differential Calculus) tutorial, I observed the tutor letting z=x+iy etc and had about half a board of working out before arriving at the same answer, which could have been acquired within a few seconds *after thinking for a bit*.
lol.. I hope whatever locus you were looking at in your tutorial was more complex than the one you gave.
 

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

Oh sorry, I wasn't clear. I was waiting outside for the first year tutorial to finish.

This subject MATH1001 is mostly done by people who did not do Extension 2 Maths, so the idea of finding locus with complex numbers etc is alien to the vast majority.

Anyway new question, a little bit different from what you guys/girls are used to seeing =)



Hint: Use the equivalent of a telescoping sum, but for products.
 
Last edited:

zeebobDD

Member
Joined
Oct 23, 2011
Messages
411
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

P(winning on first go) = 1/6

P(winning on second go) = 5/6 x 5/6 x 1/6

P(winning on third go) = 5/6 x 5/6 x 5/6 x 5/6 x 1/6

By continuing the trend and adding all the possible cases..

P(X winning) = 1/6 + 1/6 x (5/6)^2 + 1/6 x (5/6)^4 + ...

Common ratio of (5/6)^2 therefore it is a geometric progression.

=

uhmm why do you multiply it by 5/6 * 5/6 on the second go.. etc
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

uhmm why do you multiply it by 5/6 * 5/6 on the second go.. etc
I thought that they rolled the dice one at a time.

For X to win on the second go, he has to miss the first time, Y then has to miss, and then he gets 6 on his next roll.

Apply the same thing for the next go.
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,041
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

uhmm why do you multiply it by 5/6 * 5/6 on the second go.. etc
Because for X to win the second time, he must lose on his roll (probability 5/6), and Y must also lose (probability 5/6).

EDIT: beat me to it :(
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,041
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Oh sorry, I wasn't clear. I was waiting outside for the first year tutorial to finish.

This subject MATH1001 is mostly done by people who did not do Extension 2 Maths, so the idea of finding locus with complex numbers etc is alien to the vast majority.

Anyway new question, a little bit different from what you guys/girls are used to seeing =)



Hint: Use the equivalent of a telescoping sum, but for products.
<a href="http://www.codecogs.com/eqnedit.php?latex=\prod_{k=2}^n\left(1@plus;\frac{1}{k}\right) = \prod_{k=2}^n\left(\frac{k@plus;1}{k}\right) = \frac{3}{2}\cdot\frac{4}{3}\cdot \frac{5}{4}\cdot ...\cdot \frac{n}{n-1}\cdot\frac{n@plus;1}{n} =\frac{n@plus;1}{2}\\ ~\\ $For the product to be an integer $n@plus;1$ must be divisible by 2.\\ $\therefore n$ must be odd" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\prod_{k=2}^n\left(1+\frac{1}{k}\right) = \prod_{k=2}^n\left(\frac{k+1}{k}\right) = \frac{3}{2}\cdot\frac{4}{3}\cdot \frac{5}{4}\cdot ...\cdot \frac{n}{n-1}\cdot\frac{n+1}{n} =\frac{n+1}{2}\\ ~\\ $For the product to be an integer $n+1$ must be divisible by 2.\\ $\therefore n$ must be odd" title="\prod_{k=2}^n\left(1+\frac{1}{k}\right) = \prod_{k=2}^n\left(\frac{k+1}{k}\right) = \frac{3}{2}\cdot\frac{4}{3}\cdot \frac{5}{4}\cdot ...\cdot \frac{n}{n-1}\cdot\frac{n+1}{n} =\frac{n+1}{2}\\ ~\\ $For the product to be an integer $n+1$ must be divisible by 2.\\ $\therefore n$ must be odd" /></a>

New question:

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ P(x_1,y_1)$ is a point on the ellipse $\frac{x^2}{a^2}@plus;\frac{y^2}{b^2}=1.$ \\~\\A line drawn from the centre $O(0,0)$ parallel to the tangent at $P$ meets the ellipse at $Q$. \\~\\Prove that the area of $\triangle OPQ$ is independent of the position of $P." target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ P(x_1,y_1)$ is a point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$ \\~\\A line drawn from the centre $O(0,0)$ parallel to the tangent at $P$ meets the ellipse at $Q$. \\~\\Prove that the area of $\triangle OPQ$ is independent of the position of $P." title="\\ P(x_1,y_1)$ is a point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$ \\~\\A line drawn from the centre $O(0,0)$ parallel to the tangent at $P$ meets the ellipse at $Q$. \\~\\Prove that the area of $\triangle OPQ$ is independent of the position of $P." /></a>
 
Last edited:

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

Haha that question has been asked to death.

But nonetheless it is indeed a good one to practise!
 

jet

Banned
Joined
Jan 4, 2007
Messages
3,148
Gender
Male
HSC
2009
Re: 2012 HSC MX2 Marathon

Here's a nice one:

 

kingkong123

Member
Joined
Dec 20, 2011
Messages
98
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

New question:

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ P(x_1,y_1)$ is a point on the ellipse $\frac{x^2}{a^2}@plus;\frac{y^2}{b^2}=1.$ \\~\\A line drawn from the centre $O(0,0)$ parallel to the tangent at $P$ meets the ellipse at $Q$. \\~\\Prove that the area of $\triangle OPQ$ is independent of the position of $P." target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ P(x_1,y_1)$ is a point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$ \\~\\A line drawn from the centre $O(0,0)$ parallel to the tangent at $P$ meets the ellipse at $Q$. \\~\\Prove that the area of $\triangle OPQ$ is independent of the position of $P." title="\\ P(x_1,y_1)$ is a point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$ \\~\\A line drawn from the centre $O(0,0)$ parallel to the tangent at $P$ meets the ellipse at $Q$. \\~\\Prove that the area of $\triangle OPQ$ is independent of the position of $P." /></a>
 
Last edited:

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

A pretty fast way to prove the "reflective" properties of conics.

Let ABC be a triangle. Let X be a point on BC.

i) Prove that AB/BX = AC/CX if and only if the line segment AX bisects the angle BAC.

ii) Using the above, state and prove the reflective property of the hyperbola: x^2/a^2 - y^2/b^2 = 1.
 

math man

Member
Joined
Sep 19, 2009
Messages
499
Location
Sydney
Gender
Male
HSC
N/A
Re: 2012 HSC MX2 Marathon

also here are some nice integration questions:

 

zeebobDD

Member
Joined
Oct 23, 2011
Messages
411
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

can someone explain to me why a point say Q( a sec(90-x), b tan(90-x)) = a cosec x , b cot x?
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,251
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

sec(90-x)=1/cos(90-x)=1/sinx=cosecx. Similarly, tan(90-x)=cotx
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,251
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

This is a question from our 4U test this afternoon (I hope I remembered it correctly...):

<a href="http://www.codecogs.com/eqnedit.php?latex=\textup{Prove by induction that }\\ (1-a_{1})(1-a_{2})...(1-a_{n})>1-(a_{1}@plus;a_{2}@plus;...@plus;a_{n})\\ \textup{for positive integers n}\geq 2 \textup{ where}\\ 0<a_{k}<1 \textup{ for }1<k<n" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\textup{Prove by induction that }\\ (1-a_{1})(1-a_{2})...(1-a_{n})>1-(a_{1}+a_{2}+...+a_{n})\\ \textup{for positive integers n}\geq 2 \textup{ where}\\ 0<a_{k}<1 \textup{ for }1<k<n" title="\textup{Prove by induction that }\\ (1-a_{1})(1-a_{2})...(1-a_{n})>1-(a_{1}+a_{2}+...+a_{n})\\ \textup{for positive integers n}\geq 2 \textup{ where}\\ 0<a_{k}<1 \textup{ for }1<k<n" /></a>
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top