r) x^3Ln(x+1) use product rule , uv' + vu' = x^3/x+1 + 3x^2Ln(x+1)
= x^2[ x/x+1 + 3ln(x+1) ]
derivative of ln(x+1) = 1/x+1
<a href="http://www.codecogs.com/eqnedit.php?latex=\frac{d}{dx} ~ x^3\log_{e}(x@plus;1)~, ~ use ~product ~rule ~uv'~ @plus; ~vu'\\\\ = \frac{x^3}{x@plus;1} @plus; 3x^2\log_{e}(x@plus;1) \\\\ Factor ~ x^2 \\\\ \therefore x^2~(\frac{x}{x@plus;1} ~@plus; ~3\log_{e}(x@plus;1))" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\frac{d}{dx} ~ x^3\log_{e}(x+1)~, ~ use ~product ~rule ~uv'~ + ~vu'\\\\ = \frac{x^3}{x+1} + 3x^2\log_{e}(x+1) \\\\ Factor ~ x^2 \\\\ \therefore x^2~(\frac{x}{x+1} ~+ ~3\log_{e}(x+1))" title="\frac{d}{dx} ~ x^3\log_{e}(x+1)~, ~ use ~product ~rule ~uv'~ + ~vu'\\\\ = \frac{x^3}{x+1} + 3x^2\log_{e}(x+1) \\\\ Factor ~ x^2 \\\\ \therefore x^2~(\frac{x}{x+1} ~+ ~3\log_{e}(x+1))" /></a>