juantheron
Active Member
- Joined
- Feb 9, 2012
- Messages
- 259
- Gender
- Male
- HSC
- N/A
nay +C<a href="http://www.codecogs.com/eqnedit.php?latex=-ln(cos(x)) @plus; \frac{ln(cos^2(x)-\frac{1}{2})}{2}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?-ln(cos(x)) + \frac{ln(cos^2(x)-\frac{1}{2})}{2}" title="-ln(cos(x)) + \frac{ln(cos^2(x)-\frac{1}{2})}{2}" /></a>
yay or nay?
nay, it's close though.<a href="http://www.codecogs.com/eqnedit.php?latex=-ln(cos(x)) @plus; \frac{ln(cos^2(x)-\frac{1}{2})}{2}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?-ln(cos(x)) + \frac{ln(cos^2(x)-\frac{1}{2})}{2}" title="-ln(cos(x)) + \frac{ln(cos^2(x)-\frac{1}{2})}{2}" /></a>
yay or nay?
same as urs until i got to partial fractions, where i split into linear factors so i could use the cover up method to evaluate. Must have changed a sign somewhere.nay, it's close though.
I got wolframa to differentiate what you got and it is only out a negative sign.
i.e. the derivative of your answer is -tan(x)sec(2x).
What method did you use?
Yeah, it looks like wolframa does something similiar to a t=tan(x/2) substitution except it is about 10 times longer and has a ton of unnessecary algebra and messy radicals everywhere lol: http://www.wolframalpha.com/input/?i=tanxsec(2x)Another possible approach: