• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

HSC 2013 Maths Marathon (archive) (4 Viewers)

Status
Not open for further replies.

Menomaths

Exaı̸̸̸̸̸̸̸̸lted Member
Joined
Jul 9, 2013
Messages
2,373
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

Code:
\sqrt{x}
 

mahmoudali

Member
Joined
Aug 20, 2011
Messages
121
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

You need to provide more working out when integrating tanx with respect to x

also
i skipped so many steps because i cbfed showing it using this latex bs wastes to much time
and mathewYan can you please tell me where i made mistakes?
 

HeroicPandas

Heroic!
Joined
Mar 8, 2012
Messages
1,547
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

i skipped so many steps because i cbfed showing it using this latex bs wastes to much time
and mathewYan can you please tell me where i made mistakes?
at least in the end of your working, have a quick outline how you integrated tanx with respect to x (unless you memorised it)

AND, have you ever learnt how to integrate something that has an absolute?

(gotta choose plus or minus carefully)
 

integral95

Well-Known Member
Joined
Dec 16, 2012
Messages
779
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

Hm, was this your expression:



??

That is what I got initially
Lol whoops forgot about the 1/2 at the front of the bracket, (sigh I forgot about trapezoidal rule )
 

Sy123

This too shall pass
Joined
Nov 6, 2011
Messages
3,730
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

Fixed latex, that is the right idea anyway, if you didn't make any mistakes its right

EDIT: Second integral is wrong
EDIT2: First integral is wrong as well
 
Last edited:

mahmoudali

Member
Joined
Aug 20, 2011
Messages
121
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

why does my writing part leave no spaces :(
 

superSAIyan2

Member
Joined
Apr 18, 2012
Messages
320
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

Although your final answer is correct, your working out suggests that the answer is -ln(root2).

When you square root the cot^2 x it becomes abs (cotx). Now the integral is defined over the interval x = -pi/4 to x = 0. In this region cotx is negative, so abs(Cotx) = -cotx. Therefore you must put a minus sign in front of the integral.
 
Status
Not open for further replies.

Users Who Are Viewing This Thread (Users: 0, Guests: 4)

Top