Sy123
This too shall pass
- Joined
 - Nov 6, 2011
 
- Messages
 - 3,725
 
- Gender
 - Male
 
- HSC
 - 2013
 
Re: HSC 2015 3U Marathon
http://www.wolframalpha.com/input/?i=(x+1/x)^3+(1+x)^5
	
	
		
		
	
	
		
			
		
		
	
^3 (1+x)^5 = \frac{1}{x^3} (1+x^2)^3(1+x)^5 )
^3 (1+x)^5 \ $since it becomes divided by the$ \ x^3 \ $in front$ )
^3}_{A} \underbrace{(1+x)^5}_B \ $can be gotten by $ \\ $(1): multiplying a constant from$ \ A \ $and a$ \ x^5 \ $in B$ \\ \\ $There are no odd power terms in$ \ A \ $so the next case is$ \\ $(2): multiplying a$ \ x^2 \ $from$ \ A \ $and a$ \ x^3 \ $from B.$  \\ $(3): Multiplying a$ \ x^4 \ $from$ \ A \ $and a$ \ x \ $from B$ )
 \cdot \binom{5}{3} x^3 + \binom{3}{2} (x^2)^2 \cdot \binom{5}{1} x \\ \\ = x^5 \left(\binom{3}{0} \binom{5}{5} + \binom{3}{1} \binom{5}{3} + \binom{3}{2} \binom{5}{1} \right) = 46x^2 \\ \\ $Therefore the coefficient is$ \ 46 )
(as per the expansion)
	
		
			
		
		
	
								Neither of those are correct:Find the coefficient of x^2 in (x+(1/x))^3 (x+1)^5
i get an answer of 55 but the solution says 92.0
http://www.wolframalpha.com/input/?i=(x+1/x)^3+(1+x)^5
	(as per the expansion)
								
									Last edited: 
								
							
						
						
	
		
			
		
		
	
	
	
		
			
		
		
	
					
				

	
	
				
				
