LHS = (1 - sinA)(1 + cosecA)
= 1 + cosecA - sinA - sinAcosecA
Note that cosecA = 1 / sinA and so sinAcosecA would just be sinA x (1 / sinA) = 1
= 1 + cosecA - sinA - 1
= cosecA - sinA
Make a common denominator
= (1 / sinA) - sinA
= (1 / sinA) - (sin^2(A) / sinA)
= (1 - sin^2(A)) / sinA
Since you know that 1 - sin^2(A) is equal to cos^2(A) by rearranging the identity sin^2(A) + cos^2(A) = 1
= cos^2(A) / sin A
= cosA x (cosA / sinA)
Since cosA / sinA = cotA
= cosA x cotA
= cosAcotA
= RHS