Re: MX2 2016 Integration Marathon $Let $\alpha \in \mathbb{R^{+}}$ and $f(\alpha) = \int_{0}^{\infty}\frac{\ln x}{x^2+\alpha x+\alpha^2}dx$ $and $\alpha f(\alpha)-f(1) = \frac{\pi}{\sqrt{3}}\;,$ Then $\alpha $ $\noindent Substitute $\frac{a^2}{y} = x$, reduce and integrate as an arctangent. Then $\alpha = e\sqrt{e}