In continuation to this question, I have another:
\\\text{Let }f\text{ be continuous on [a,b]. Prove, provided }g(x)\neq0\text{ for }x\in[a,b],\\\text{that there exists c}\in(a,b)\text{ such that:}\\\int_{a}^{b}f(t)g(t)dt=f(c)\int_{a}^{b}g(t)dt\\\text{Hint: Generalise the previous proof.}