• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Search results

  1. Sy123

    Philosophy

    I only really like and appreciate analytic-ish philosophy. I say -ish because analytic philosophy was a term that refers only to philosophy in the english world since the 20th century, however that type of rigorous systematic philosophy had been practiced in the medieval scholastic era and also...
  2. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level \\ $Let$ \ T_N = \sum_{k=1}^N \frac{1}{\sqrt{k+\frac{1}{2}}} \\ S_N = \sum_{k=1}^N \frac{1}{\sqrt{k}} \\ \\ $Find$ \ \lim_{N \to \infty} \frac{T_N}{S_N}
  3. Sy123

    HSC 2015 MX2 Marathon (archive)

    Re: HSC 2015 4U Marathon \\ $Solve the following system of equations$ \\ \\ 2x_1 + x_2+x_3 + x_4 + x_5 = 6 \\ x_1 + 2x_2 + x_3+x_4+x_5 = 12 \\ x_1+x_2+2x_3+x_4+x_5 =24 \\ x_1+x_2+x_3+2x_4+x_5 = 48 \\ x_1+x_2+x_3+x_4+2x_5=96
  4. Sy123

    HSC 2015 MX2 Marathon (archive)

    Re: HSC 2015 4U Marathon \\ $Show that$ \ \log_{10}8 \ $is irrational$
  5. Sy123

    HSC 2015 MX1 Marathon (archive)

    Re: HSC 2015 3U Marathon (If you allow me to build off of this) \\ $ii) Using a graph, show that$ \\ \int_{n}^{2n}\frac{dx}{x} - \frac{1}{2n} < \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} < \int_{n}^{2n} \frac{dx}{x} \\ $iii) Hence explain why$ \ \lim_{n \to \infty}...
  6. Sy123

    reduction formula

    Your error occured when you integrated, there shouldn't be the \frac{-1}{n-1} If: \\ u = (1+x^2)^{-n} \\ du = -2nx(1+x^2)^{-n-1} \ dx \\ dv = 1 \ dx \\ v = x So the first term is \frac{x}{(1+x^2)^{n}} \right |_0^1
  7. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level Isn't the nth partial sum of the sequence S(n) = b1 + b2 + .. + bn? Therefore, S(1) = b1?
  8. Sy123

    HSC 2015 MX1 Marathon (archive)

    Re: HSC 2015 3U Marathon \\ $Using the identity$ \ (1+x)^n \left(1+ \frac{1}{x} \right)^n = \frac{1}{x^n}(1+x)^{2n} \ $or otherwise, show that$ \\ \\ \sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}
  9. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level \\ $The definitions of the sequences are$ \ a_{n} + a_{n+1} = b_n \ (1) \ $and$ \ a_n a_{n+1} = 2^n \ (2) \\ a_1 = 1 \ $and$ \ b_1 = 3 \\ \frac{2^{n+1}}{2^n} = \frac{a_{n+2} a_{n+1}}{a_{n+1}a_n} \Rightarrow \ a_{n+2} = 2a_n \\ $So, given$ \...
  10. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level \\ $By drawing the graph of$ \ f(x) = \tan^{-1} \left( \frac{1}{x} \right) \ $and drawing the upper rectangles from$ \ x = 1 \ $to$ \ x = N \ $for a positive integer$ \ N \\ $It becomes clear that$ \\ \\ \int_1^{N+1}\tan^{-1} \frac{1}{x} \ dx <...
  11. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level \\ \frac{A_0}{x} + \frac{A_1}{x+1} + \dots + \frac{A_n}{x+n} = \frac{1}{x(x+1) \dots (x+n)} \\ \\ \Rightarrow \ \sum_{k=0}^n A_k \frac{x(x+1)\dots(x+n)}{x+k} = 1 \\ x = -k \Rightarrow \ A_k (n-k)(n-k-1)\dots(1)(-1)(-2)\dots(-k) = (-1)^k(n-k)! k! \\...
  12. Sy123

    HSC 2015 MX1 Marathon (archive)

    Re: HSC 2015 3U Marathon Well give it a go if you think it will work. Also for that expression, I don't know how you simplified: \binom{n-1}{k} = \frac{(k+n)(k-1+n)}{n!} because that is not true
  13. Sy123

    HSC 2015 MX1 Marathon (archive)

    Re: HSC 2015 3U Marathon How would you simplify the LHS?
  14. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level f(xy) = f(x) f(y) - f(x+y) + 1 \\ $Let$ \ x=y=0 \ \Rightarrow \ f(0) = f(0)^2 - f(0) + 1 \Rightarrow \ f(0) = 1 \\ $Let$ \ x = 1, y = -1 \ \Rightarrow \ f(-1)(f(1) - 1) = 0 \\ \\ \therefore \ f(-1) = 0 \ $or$ \ f(1) = 1 \\ $If$ \ f(1) = 1 \ $then...
  15. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level \\ $Show that$ \ \left (\frac{n+1}{2} \right)^n \geq n! \ $for integers$ \ n \geq 1
  16. Sy123

    HSC 2015 MX1 Marathon (archive)

    Re: HSC 2015 3U Marathon \\ $Show that$ \ \binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n-1}{k} = \binom{n}{k+1} \ $for$ \ 0 \leq k \leq (n-1) \ $for integers$ \ k,n
  17. Sy123

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level (Doesn't fit in the other thread) \\ $Show that there does not exist a polynomial$ \ f(x) \ $such that$ \\ xf(x-1) = (x+1)f(x)
  18. Sy123

    HSC 2015 MX1 Marathon (archive)

    Re: HSC 2015 3U Marathon This would require proof
  19. Sy123

    HSC 2015 MX1 Marathon (archive)

    Re: HSC 2015 3U Marathon \\ $Prove using first principles that$ \ \frac{d}{dx} \sin x = \cos x
  20. Sy123

    HSC 2015 MX2 Marathon (archive)

    Re: HSC 2015 4U Marathon \\ $Show that the hyperbola$ \ x^2 - y^2 = a^2 \ $and$ \ xy = c^2 \ $intersect at right angles$
Top