• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Search results

  1. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon ALTERNATE METHOD: $ \begin{align*} \int_{0}^{\infty} \frac{2x^3-3x^2+1}{x^6-2x^3+x^2-2x+2} \text{ d}x &= \int_{0}^{\infty} \frac{(2x+1)(x-1)^2}{(x^3-1)^2+(x-1)^2} \text{ d}x \\ &= \int_{0}^{\infty} \frac{(2x+1)(x-1)^2}{(x-1)^2((x^2+x+1)^2+1)} \text{ d}x \\...
  2. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon NEW QUESTION: $ Evaluate $\int_{0}^{\infty} \frac{2x^3-3x^2+1}{x^6-2x^3+x^2-2x+2} \text{ d}x$ $
  3. VBN2470

    Math1151 resources?

    2013 Algebra Quiz 1 (Ver 2A & 2B) tests are now up! I will be posting solutions for them soon in the coming week. Link: https://www.dropbox.com/sh/q22hegzq1uu5uxt/AAB4rlHJkaWMsmaA6ML46HULa?dl=0 Enjoy! :)
  4. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon My bad, answer should then be \sin^{-1}x-\sqrt{1-x^2}+C :)
  5. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon Multiply the integrand by \sqrt{\frac{1+x}{1+x}} , then split the fraction into two components. This will get it into standard form, answer is \frac{\pi+2}{2} .
  6. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon Good job :). Answer could also be expressed as \frac{\pi}{2}\ln{|t|} .
  7. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon NEW QUESTION: $ Evaluate $\int_{\frac{1}{t}}^{t} \frac{\tan^{-1}x}{x}dx$ $
  8. VBN2470

    UNSW Chit Chat Thread

    Re: UNSW Chit Chat Thread 2015. Officially out on 17 April. Solid timetable :)
  9. VBN2470

    UNSW Chit Chat Thread

    Re: UNSW Chit Chat Thread 2015. Lol, I am guessing you thought ACCT1511 had like 37 hrs per week :p
  10. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon Damn that's neat! :)
  11. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon Don't know if this can be done within MX2 bounds..
  12. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon Almost there, I think you integrated the last part incorrectly, where the ln(u) comes from? You may have also mixed up some of the signs in your expression as well..
  13. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon NEW QUESTION: $ Evaluate $\int_{0}^{\infty} \frac{t^2}{(1+t)^5}dt$ $
  14. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon BUMP :)
  15. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon $ NOTE that $\pi^{x} = e^{(\ln{\pi})x}$, then use standard laws of integration of exponentials to get \\ $\frac{\pi^{x}}{\ln\pi}+C$ $
  16. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon :p
  17. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon NEW QUESTION: $ Evaluate $\int \frac{\sec\theta+\tan\theta}{\csc\theta+\cot\theta}d\theta$ $
  18. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon $ Use the substitution $u = \sqrt{x}$, then apply IBP twice to get \\ $2e^{\sqrt{x}}(x-2\sqrt{x}+2)+C$ $
  19. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon NEW QUESTION $ Find the exact value of $\int_{0}^{1} \frac{\ln(1+x)}{1+x^2}$ $
  20. VBN2470

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon $ Let $u^2 = 1+\sin(x)$, then \\ $\int \sqrt{1+\sin(x)}\cot(x)dx$ \\ = $\int \frac{2u^2}{u^2-1}du$ \\ = $2u + \ln\frac{u-1}{u+1}+C $ \\ = 2\sqrt{1+\sin(x)} + \ln\left(\frac{\sqrt{1+\sin(x)}-1}{\sqrt{1+\sin(x)}+1}\right)+C$ $
Top