\\y=3x+x^{\frac{3}{2}} \text{, }\frac{dy}{dx}=3+1.5x^{0.5}\\x\geq0 \text { since } y \text{ is complex for }x<0\\\frac{dy}{dx} \text{ is undefined when }x=0 \\\ \text {Taking the limit, }\lim_{x\to 0}(\frac{dy}{dx})=\lim_{x\to 0}(3+1.5x^{0.5})=3\\\therefore y=3x \text{ is tangent to the curve as...