Re: HSC 2018 MX2 Marathon
Nice!
$Alternatively $ (1+i)^m = (1-i)^m
\noindent \frac{(1+i)^m}{(1-i)^m} = 1
\frac{m\sqrt{2}(cis \frac{m\pi}{4})}{m\sqrt{2}(cis \frac{-m\pi}{4})} = 1
cis \frac{m\pi}{2} = cis0
\frac{m\pi}{2} = 0 + 2k\pi $ where k = 0, -1, 1, -2, 2...$
m = 4k...