$Thanks! So just to confirm: if I use $T_k=\binom{n}{k}x^{n-k}$, where $k=0,1,2...$ for $0\leq k \leq n$, and $T_{k-1}=\binom{n}{k-1}x^{n-(k-1)}$, where $k=1,2,3...$ for $0\leq k-1 \leq n$, the greatest coefficient can be determined using $\frac{T_k}{T_{k-1}}$? And this gives me a value of $k$...