$Sum of $n$ terms of series $\frac{1}{2}+\frac{1}{2!}\left(\frac{1}{2}\right)^2+\frac{1\cdot 3}{3!}\left(\frac{1}{2}\right)^3+\frac{1\cdot 3 \cdot 5}{4!}\left(\frac{1}{2}\right)^4+...$
(1)$ Find the values of $a$ for which $ax^2+(a-3)x+1<0$ for$
$at least one positive $x$
(2)$ Find the values of $a$ for which $4^t-(a-4)2^t+\frac{9}{4}a<0\forall t \in (1,2)$
$If $z_{1}\;,z_{2}\;,z_{3}\;,z_{4}$ are $4$ non zero complex number such
$that $\Im(z_{1}+z_{2}) = \Im(z_{3}+z_{4}) =0\;,$ Then possible value of$
\arg(\frac{z_{1}}{z_{2}})+\arg(\frac{z_{3}}{z_{4}}) =
\bf{Options::}
(a)\;\; 0\;\;\;\;\;\; (b)\;\; \frac{\pi}{2}\;\;\;\;\;\; (c)\;\...
$(1)\; Two point $P$ and $Q$ are taken on straight line $OA$ of length $a$ unit
$ Then the probability that $PQ>b\;$ unit, Where $a>b$
$(2)\; The decimal part of logarithm of two numbers taken at random are$
$found to $7$ places , Then the probability that second number can be$...