Re: HSC 2015 4U Marathon
\\ $Let the polynomial$ \ P(x) \ $be a monic cubic polynomial with non-negative real roots$ \ a,b,c
\\ $i) Find$ \ P(a) + P(b) + P(c) \ $in terms of$ \ a,b,c
\\ $ii) Prove for non-negative reals$ \ x,y,z \ $that$ \ x^2 + y^2 + z^2 \geq xy + xz + zx
\\ $iii) Hence...