Re: HSC 2015 4U Marathon
\\ $a) Show that for complex$ \ u,v \ $then$ \ |u+v|^2 = |u|^2 + |v|^2 + uv \left(\frac{\bar{u}}{u} + \frac{\bar{v}}{v} \right)
\\ $b) Let the points$ \ X_0, X_1, X_2, \dots, X_{n-1} \ $represent the roots of$ \ z^n = 1 \ $on the Argand plane. Let$ \ P \ $represent...