MedVision ad

Search results

  1. Sy123

    HSC 2014 MX2 Marathon (archive)

    Re: HSC 2014 4U Marathon C_0(x) is supposed to be 1, my bad, editing now And yes it should work for x = 0, (see when n=0)
  2. Sy123

    HSC 2014 MX2 Marathon ADVANCED (archive)

    Re: HSC 2014 4U Marathon - Advanced Level \\ $Given polynomial$ \\ P(x) = \sum_{k=0}^n a_n x^n \ $where$ \ a_k \in \mathbb{R} \ $and$ \ a_k > 0 \ $for$ \ k=0,1,2, \dots, n \\ \\ $Show that for any complex root of$ \ P \ $, that is$ \ \alpha \ $then$ \ |$arg$ \ \alpha| \geq \frac{\pi}{n}
  3. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \\ \int_0^1 \sin \ln x \ dx
  4. Sy123

    HSC 2014 MX2 Marathon (archive)

    Re: HSC 2014 4U Marathon \\ $Let$ \ C_n(\cos \theta) = \cos n \theta \ $for some polynomial$ \ C_n \ $defined on$ \ -1 \leq x \leq 1 \\ $i) Show that$ \\ \\ C_{n}(x) = \begin{cases} 1, \ n = 0 \\ x, \ n= 1 \\ 2xC_{n-1}(x) - C_{n-2}(x), \ n \geq 2 \end{cases} \\ $ii) Using De Moivere's...
  5. Sy123

    HSC 2014 MX2 Marathon (archive)

    Re: HSC 2014 4U Marathon \\ $Let$ \ ABC \ $be a triangle with point$ \ X \ $on side$ \ BC $. If$ \ AB = c, AC = b, AX = p, BX = m, $and$ \ XC = n, \ $then, prove$ \ ap^2 +amn = b^2m+c^2n.
  6. Sy123

    HSC 2014 MX2 Marathon ADVANCED (archive)

    Re: HSC 2014 4U Marathon - Advanced Level Its just glorified AM-GM (if I didn't make a mistake) \\ \sum_{i < j} (a_i^2 b_j^2 + a_j^2 b_i^2) \geq \sum_{i <j} 2a_i b_i a_j b_j \ \ $(AM-GM)$ \sum_{k=1}^n a_k^2b_k^2 + \sum_{i < j} (a_i^2 b_j^2 + a_j^2 b_i^2) \geq \sum_{i <j} 2a_i b_i a_j b_j +...
  7. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon Don't forget \int e^{x+e^{x}} \ dx
  8. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon Is there a reason for that specific list of functions to be considered elementary? What if I say Elementary = anything formed recursively (using the operations of +,-,*,/,^ and composition) from: the reals, the monomial x, the 3 trig funcs and their inverses...
  9. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon Is there a rigorous definition of "elementary function"? What makes the gamma function (for example) not elementary, but something like ln() or sin() elementary even though they are both transcendental?
  10. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \\ \int_0^{\frac{\pi}{4}} \ln (1+\tan x) \ $d$x
  11. Sy123

    HSC 2014 MX2 Marathon ADVANCED (archive)

    Re: HSC 2014 4U Marathon - Advanced Level \\ $Find$ \ \sum_{n = 0}^{\infty} \frac{(-1)^n}{3n+1}
  12. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon Can that be found in terms of elementary functions?
  13. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon Yea its something like that With integration I just try to figure out how to do the integration but I don't really do the computing lol e.g. "oh yea this integral you just do this substitution then alter that then partial fractions and compute"
  14. Sy123

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon You can do LaTeX by surrounding the tex in and tags, no need to put $ signs like mathstackexchange I would just use this: \\ 1 = (\sin^2 x + \cos^2 x)^2 = \sin^4 x + \cos^4 x + 2\sin^2 x \cos^2 x \\ \\ \Rightarrow \ \frac{1}{\sin^4 x + \cos^4 x} = \frac{1}{1 -...
  15. Sy123

    HSC 2014 MX2 Marathon ADVANCED (archive)

    Re: HSC 2014 4U Marathon - Advanced Level \\ 2 = (a^3+b^3) = (a+b)(a^2-ab+b^2) = (a+b)((a+b)^2 - 3ab) \\ = (a+b)^3 + 3(a+b) (-ab) \geq (a+b)^3 + 3(a+b) \frac{-(a+b)^2}{4} = \frac{1}{4}(a+b)^3 \\ \\ 2 \geq \frac{1}{4}(a+b)^3 \Rightarrow \ 8 \geq (a+b)^3 \Rightarrow \ 2 \geq a+b
  16. Sy123

    HSC 2014 MX2 Marathon ADVANCED (archive)

    Re: HSC 2014 4U Marathon - Advanced Level Nice proof! Here is mine: \\ \frac{(a_1 a_2 \dots a_n)^{1/n} + (b_1 b_2 \dots b_n)^{1/n}}{((a_1+b_1)\dots(a_n + b_n))^{1/n}} \\ \\ = \left(\frac{a_1}{a_1+b_1} \dots \frac{a_n}{a_n+b_n} \right)^{1/n} + \left( \left(1 - \frac{a_1}{a_1+b_1} \right)...
  17. Sy123

    HSC 2014 MX2 Marathon ADVANCED (archive)

    Re: HSC 2014 4U Marathon - Advanced Level I don't think that would work Besides, there's a much more elegant solution!
  18. Sy123

    HSC 2014 MX2 Marathon ADVANCED (archive)

    Re: HSC 2014 4U Marathon - Advanced Level \\ $Let$ \ a_k \ $and$ \ b_k \ $be non-negative for$ \ k=1,2,\dots, n \\ \\ $Prove that$ \\\\ (a_1 \cdot a_2 \dots a_n)^{\frac{1}{n}} + (b_1 \cdot b_2 \dots b_n)^{\frac{1}{n}} \leq \left((a_1 + b_1) \cdot (a_2+b_2) \dots (a_n + b_n)...
  19. Sy123

    HSC 2014 MX2 Marathon (archive)

    Re: HSC 2014 4U Marathon \\ $4 points with$ \ x$-coordinates$ \ x_1, x_2, x_3, x_4 \ $lie on the hyperbola$ \ xy = 1 \ $show that if these 4 points form a cyclic quadrilateral, then$ \ x_1x_2x_3x_4 = 1
Top