\\ $If$ \ \vec{v}_1 , \vec{v}_2 , \vec{v}_3 \ \text{are linear independent} \\ \\ $and$ \ \ a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3 = x\vec{u}_1 + y\vec{u}_2 + z\vec{v}_3 \\ \\ $then this implies$ \ \vec{u}_1 , \vec{u}_2 , \vec{u}_3 \ \text{is linear indepdendent}
Is this true? I am very strongly...