Re: HSC 2013 4U Marathon
$The complex numberss$ \ \ a_1, a_2, a_3, \dots, a_n
$satsify$ \ \ |a_i| \leq A \ \ $for$ \ i=1,2, \dots, n \ \ $for positive real$ \ A \geq 1
$For the complex equation$
a_n z^n + a_{n-1}z^{n-1} + \dots + a_1 z = B \ \ $for positive real$ \ B \leq 1
$Show that...