Re: HSC 2013 4U Marathon
Moving on from part (i)
LHS = \frac{(x+i)^{2n}}{(\cot^2 \theta + 1)^n} = \sin^{2n} \theta (x+i)^{2n} = \cos 2n\theta + i\sin 2n\theta
Equate real parts of both sides, also make the substitution:
y=x^2
\frac{\cos(2n\theta)}{\sin^{2n} \theta} = y^n - \binom{2n}{2}...