Q(k)=(k+1)P(k)-k=0$ for $ k=0,1,...,n\\ \Rightarrow Q(x)=K\prod_{k=0}^n (x-k) \quad $ for some constant $K$, since $ \deg Q=n+1\\ \Rightarrow 1=Q(-1)=K\prod_{k=0}^n (-1-k)=K\prod_{k=0}^n (1+k)=(n+1)!K\\$where the penultimate equality is from the fact that $n$ is odd. Hence $K=1/(n+1)!$. This...