unofficiallyred12
Member
- Joined
- Aug 4, 2021
- Messages
- 88
- Gender
- Male
- HSC
- 2023
first note 1+x+x^9+x^10 = (1+x)(1+x^9)
then we split the integrand into x^2ln[(1+x)(1+x^9)]/(1+x^3) = x^2(ln(1+x) + ln(1+x^9))/(1+x^3)
now we split the integrals up so we have integral from 1 to 0 of x^2ln(1+x)/(1+x^3) + integral from 1 to 0 of x^2ln(1+x^9)/(1+x^3)
Then we do a u =x^3 for the 2nd integral, then dummy variable it back to in terms of x.
Afterwards, if u integrate integral of x^2ln(1+x)/(1+x^3) by parts with u = ln(1+x) and v' = x^2/(1+x^3), some cancellation should occur nicely and u should get the answer.
then we split the integrand into x^2ln[(1+x)(1+x^9)]/(1+x^3) = x^2(ln(1+x) + ln(1+x^9))/(1+x^3)
now we split the integrals up so we have integral from 1 to 0 of x^2ln(1+x)/(1+x^3) + integral from 1 to 0 of x^2ln(1+x^9)/(1+x^3)
Then we do a u =x^3 for the 2nd integral, then dummy variable it back to in terms of x.
Afterwards, if u integrate integral of x^2ln(1+x)/(1+x^3) by parts with u = ln(1+x) and v' = x^2/(1+x^3), some cancellation should occur nicely and u should get the answer.