• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

Conics q..HELP! (1 Viewer)

DcM

Member
Joined
Sep 1, 2003
Messages
53
Gender
Female
HSC
2004
I need help wif the following conics questions:

1) The point P (a sec#, b tan#) lies one the hyperbola (x^2/a^2) - (y^2/b^2) = 1. Let d1 and d2 be the distances from P to each of the hyperbola's asymptotes. Show d1.d2 = (a^2.b^2)/(a^2 + b^2)


2) The points A (a, 0), A' (-a, 0) and P (a sin#, b cos#) are on the hyperbola (x^2/a^2) - (y^2/b^2) = 1 where a>0. AP and A'P interesect the asymptote ay = bx at Q and R respectively. Show that QR = ae.

Thanks alot!
DcM
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,640
Gender
Male
HSC
N/A
Originally posted by DcM
The point P (a sec#, b tan#) lies one the hyperbola (x^2/a^2) - (y^2/b^2) = 1. Let d1 and d2 be the distances from P to each of the hyperbola's asymptotes. Show d1.d2 = (a^2.b^2)/(a^2 + b^2)
The distances d<sub>1</sub> and d<sub>2</sub> are perpendicular distances, and thus should be found using the perpendicular distance formula.

Take d<sub>1</sub> as the distance from p to y = bx / a (ie. bx - ay = 0).
So, d<sub>1</sub> = |b(asec#) - a(btan#)| / sqrt[(b)<sup>2</sup> + (-a)<sup>2</sup>] = ab|sec# - tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)

Similarly, take d<sub>2</sub> as the distance from p to y = -bx / a (ie. bx + ay = 0).
So, d<sub>2</sub> = |b(asec#) + a(btan#)| / sqrt[(b)<sup>2</sup> + (a)<sup>2</sup>] = ab|sec# + tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)

Thus, d<sub>1</sub> * d<sub>2</sub> = [ab|sec# - tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)] * [ab|sec# + tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)]
= (ab)<sup>2</sup>|(sec# - tan#)(sec# + tan#)| / [sqrt(a<sup>2</sup> + b<sup>2</sup>)]<sup>2</sup>
= a<sup>2</sup>b<sup>2</sup>|sec<sup>2</sup># - tan<sup>2</sup>#| / (a<sup>2</sup> + b<sup>2</sup>)
= a<sup>2</sup>b<sup>2</sup>|1| / (a<sup>2</sup> + b<sup>2</sup>)
= a<sup>2</sup>b<sup>2</sup> / (a<sup>2</sup> + b<sup>2</sup>), as required.
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,640
Gender
Male
HSC
N/A
Just bringing this back to the top, as Q2 has not yet been answered.

(And, if anyone is wondering, no I haven't spotted any useful geometric short cut...)
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,640
Gender
Male
HSC
N/A
Originally posted by DcM
2) The points A (a, 0), A' (-a, 0) and P (a sin#, b cos#) are on the hyperbola (x^2/a^2) - (y^2/b^2) = 1 where a>0. AP and A'P interesect the asymptote ay = bx at Q and R respectively. Show that QR = ae.
We are talking about a hyperbola, so this question should read that P is (asec@, btan@).

To start, we need AP: m<sub>AP</sub> = (btan@ - 0)(asec@ - a) = btan@ / a(sec@ - 1)
And, since A(a, 0) lies on AP, its equation is y = b(x - a)tan@ / a(sec@ - 1). The line meets the asymptote ay = bx when: bx / a = b(x - a)tan@ / a(sec@ - 1)
x[1 - tan@ / (sec@ - 1)] = -atan@ / (sec@ - 1)
x = [-atan@ / (sec@ - 1)] * [(sec@ - 1) / (sec@ - 1 - tan@)] = atan@ / (1 + tan@ - sec@)
So, x = asin@ / (sin@ + cos@ - 1)
Since this intersection (at Q) lies on y = bx / a, we easily find that Q is
(asin@ / (sin@ + cos@ - 1), bsin@ / (sin@ + cos@ - 1))

Next, we need R. The equation of A'P is y = b(x + a)tan@ / a(sec@ + 1). The line meets the asymptote ay = bx when: bx / a = b(x + a)tan@ / a(sec@ + 1)
x[1 - tan@ / (sec@ + 1)] = atan@ / (sec@ + 1)
x = [atan@ / (sec@ + 1)] * [(sec@ + 1) / (sec@ + 1 - tan@)] = atan@ / (sec@ + 1 - tan@)
So, x = asin@ / (1 + cos@ - sin@)
Since this intersection (at R) lies on y = bx / a, we easily find that R is
(asin@ / (1 + cos@ - sin@), bsin@ / (1 + cos@ - sin@))

Now, using the distance formula, QR<sup>2</sup> = (x<sub>Q</sub> - x<sub>R</sub>)<sup>2</sup> + (y<sub>Q</sub> - y<sub>R</sub>)<sup>2</sup>
= {[asin@ / (sin@ + cos@ - 1) - asin@ / (1 + cos@ - sin@)]<sup>2</sup> + [bsin@ / (sin@ + cos@ - 1) - bsin@ / (1 + cos@ - sin@)]<sup>2</sup>}
= (a<sup>2</sup> + b<sup>2</sup>)[f(@)]<sup>2</sup> _____(*), where f(@) = [sin@ / (sin@ + cos@ - 1)] - [sin@ / (1 + cos@ - sin@)]

Now, f(@) = [sin@ / (sin@ + cos@ - 1)] - [sin@ / (1 + cos@ - sin@)]
= sin@[(1 + cos@ - sin@) - (sin@ + cos@ - 1)] / [(1 + cos@ - sin@) * (sin@ + cos@ - 1)]
= 2sin@(1 - sin@) / [(cos@)<sup>2</sup> - (1 - sin@)<sup>2</sup>]
= 2sin@(1 - sin@) / [cos<sup>2</sup>@ - 1 + 2sin@ - sin<sup>2</sup>@]
= 2sin@(1 - sin@) / [cos<sup>2</sup>@ - sin<sup>2</sup>@ - cos<sup>2</sup>@ + 2sin@ - sin<sup>2</sup>@], using sin<sup>2</sup>@ + cos<sup>2</sup>@ = 1
= 2sin@(1 - sin@) / (2sin@ - 2sin<sup>2</sup>@)
= 1

So, using (*), QR<sup>2</sup> = (a<sup>2</sup> + b<sup>2</sup>) * (1)<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup>
= a<sup>2</sup> + a<sup>2</sup>(e<sup>2</sup> - 1), noting that b<sup>2</sup> = a<sup>2</sup>(e<sup>2</sup> - 1) for a hyperbola
= a<sup>2</sup>e<sup>2</sup>

So, QR = ae, as QR > 0, as required.
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top