cos^2 a * cos^2 b - sin^2 a * sin^2 b
= (cos a cos b - sin a sin b)(cos a cos b + sin a sin b)
= cos(a+b)*cos(a-b)
----------------------------------------------
cos (x+y) = cos x cos y - sin x sin y
cos (x-y) = cos x cos y + sin x sin y
therefore cos (x+y) + cos(x-y) = 2 cos x cos y
let x = a+b, y = a-b
cos (a+b) * cos(a-b)
= 1/2 * [cos(a+b+a-b)+ cos(a+b-a+b)]
= 1/2 [cos 2a + cos 2b]
------------------------------------
obviously using the identity cos x cos y = 1/2 [cos(x+y) + cos(x-y)] straight is out of the 3unit maths syllabus ( it's in the 4unit syllabus)
I am not bother to do the ext1 maths way but this is probably valid in a 3unit style exam