I don't know what approach they seek, but my approach (potentially going beyond year 9 or 10 Maths*) is as follows:
Rearranging the given equation to make 

 the subject, I get that

and sketching this gives a rectangular hyperbola with asymptotes at 

 and 

.
View attachment 32730
From this graph, a few things are immediately clear:
- as  increases, increases, decreases decreases
- we can only have both  and and for for and hence the minimum possible value for and hence the minimum possible value for is 3. is 3.
- as  increases, increases, approaches the value 1.5, and so I can find an upper bound for approaches the value 1.5, and so I can find an upper bound for by examining the case by examining the case : :
 \qquad \text{provided $x \ne \cfrac{5}{2}$, so we don't multiply by 0} \\ 3x + 1 &= 4x - 10 \\ 1 + 10 &= 4x - 3x \\ x &= 11 \end{align*})
- So, if  then then (as (as decreases when decreases when increases), and since increases), and since is bounded below by 1.5 for positive is bounded below by 1.5 for positive , , cannot be an integer if cannot be an integer if .  In other words, all solutions must satisfy .  In other words, all solutions must satisfy . .
- We already have one solution,  and and , for which , for which 
We could now find all solutions by trial-and-error by sequentially testing 

.  This gives us that 

 and that 

, and thus

So, there are two solutions:

If the requirement that 

 and 

 be positive is removed, but they are still required to be integers, two other solutions appear:

but it does not add any extra possible values for 

, which can only be -7 or 9.
* A note on "potentially going beyond year 9 or 10 Maths"...  I originally defined a function 
 = x - y= x - \cfrac{3x+1}{2x-5})
 which has an oblique asymptote of 

 and then used the fact that 
)
 must be an integer to constrain the possible domain of 

... once 
)
 is sufficiently close to the asymptote, any integer value of 

 will give a non-integer value of 
)
.  As I was typing this up, however, I realised that I could simplify the method by looking at just the above hyperbola, which makes the level of the Maths involved suited to junior high school so long as hyperbolas have been covered.