Students helping students, join us in improving Bored of Studies by donating and supporting future students!
Let theta be an angle in the triangle.
Let us factorise the x out and notice a perfect square
In a simple harmonic motion(SHM), acceleration is defined as x(dot dot) = - n^2 x
Lol don't worry about that question, I stuffed it up.Let us factorise the x out and notice a perfect square
= ∫√x √sin^4 x - 2sin^2 x + 1 .dx
= ∫√x √(sin^2 x -1)^2
= ∫√x √(-cos^2 x)^2
= ∫√x |cos^2 x|.dx
There are no limits/borders, hence we ignore the absolute sign
∫√x cos^2 x.dx
Is this possible?
Oh shet. I fixed that up afterward but ceebs to edit since no one did it. thanks for the note.In a simple harmonic motion(SHM), acceleration is defined as x(dot dot) = - n^2 x
Ur equation has no negative sign, hence its not a SHM
Well done, was quiet a straight forward question i must admit and the only reason i posted it was because i was hoping someone would post a non-calculus solution. It can be done very elegantly as follows:
Definately a 3U question:
![]()
Very nice! Excellently done, same method as mine(a) P'(x)=5x^4 -5c
To find any stationary points, solve P'(x)=0
5x^4 -5c=0
x^4 =c
x = ±∜c
But since c<0, ∜c is undefined and hence there are no stationary points.
P(0)=0-0+1
= 1
Also since c<0, we notice that P'(x)>0 for all real x, and hence P(x) is monotonic increasing.
By sketching a possible graph of P(x), we can clearly see that P(x) will have only one root, and that this root will be negative.
(b) The abscissae of the two stationary points are ∜c and -∜c.
P(∜c)=(∜c)^5 -5c(∜c) + 1
=c^(5/4) -5c^(5/4) + 1
= 1 - 4c^(5/4)
P(-∜c)=(-∜c)^5 -5c(-∜c) + 1
=-c^(5/4) +5c^(5/4) + 1
= 1 + 4c^(5/4)
By considering a graph of P(x), we can tell that there will be 3 distinct real roots if the product of the y coordinates is negative. i.e. one turning point is above the x-axis, one turning point is below the x-axis.
∴P(x) has three distinct real roots iff P(∜c).P(-∜c) < 0
P(∜c).P(-∜c)= [1 - 4c^(5/4)].[1 + 4c^(5/4)]
= 1 - 16c^(5/2)
= 1 - [4c^(5/4)]^2
< 0
1 - [4c^(5/4)]^2 < 0
[4c^(5/4)]^2 > 1
4c^(5/4) > 1
c^(5/4) > 1/4
c^5 > (1/4) ^4
c > (1/4) ^(4/5)
∴ P(x) has three distinct roots if and only if c > (1/4) ^(4/5).
fuuuu someone teach me how to use latex...