• Interested in being a marker for this year's BoS Maths Trials?
    Let us know before 31 August, see this thread for details

HSC 2015 MX2 Integration Marathon (archive) (1 Viewer)

Status
Not open for further replies.

braintic

Well-Known Member
Joined
Jan 20, 2011
Messages
2,109
Gender
Undisclosed
HSC
N/A
Re: MX2 2015 Integration Marathon

Find the 6th roots of unity, delete 1 from the list, pair the complex roots to form quadratic factors, then use partial fractions.
(or use partial fractions on the complex factors)
 

leehuan

Well-Known Member
Joined
May 31, 2014
Messages
5,768
Gender
Male
HSC
2015
Re: MX2 2015 Integration Marathon

factorise (x^6 - 1) and you'll eventually get int (dx/(x^2 + x+1)(x^3 + 1)) and then partial
Idk if there's an easier way
Just remember to break the (x^3+1) further into (x+1)(x^2-x+1) before you commence the partial fractions process.


What I would've done:


When I made the problem I forgot you could factor out (x^2-1) because it was a difference of even powers.
 
Last edited:

Ekman

Well-Known Member
Joined
Oct 23, 2014
Messages
1,611
Gender
Male
HSC
2015
Re: MX2 2015 Integration Marathon

Next Question:

 

Ekman

Well-Known Member
Joined
Oct 23, 2014
Messages
1,611
Gender
Male
HSC
2015
Re: MX2 2015 Integration Marathon

Just to shorten the first bit of working out:



So when you change the dx to du for the substitution u=sinx, you will have:



So using the property sin^2x +cos^2x =1, you can directly go to the 4th step.

Other than that it looks all good.
 

Ekman

Well-Known Member
Joined
Oct 23, 2014
Messages
1,611
Gender
Male
HSC
2015
Re: MX2 2015 Integration Marathon

Next Question:

 

porcupinetree

not actually a porcupine
Joined
Dec 12, 2014
Messages
661
Gender
Male
HSC
2015
Re: MX2 2015 Integration Marathon

Not sure if anyone's asked this; it's a fun one which requires the use of complex numbers (at least for my method of working it out):

 

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,647
Gender
Undisclosed
HSC
2015
Re: MX2 2015 Integration Marathon

Not sure if anyone's asked this; it's a fun one which requires the use of complex numbers (at least for my method of working it out):

Lee solved this using the substitution of tan inverse u
 

Natural Water

New Member
Joined
Jun 4, 2015
Messages
8
Gender
Male
HSC
2015
Re: MX2 2015 Integration Marathon

Solid question leehuan

Untitled1.png
 
Last edited:

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,647
Gender
Undisclosed
HSC
2015
Re: MX2 2015 Integration Marathon

Neat first post.


Can't be evaluated by standard methods.
------------
Not sure if Ext 2 maths suffices for this, however trialling with values for 'n' gave an interesting result

Is the answer

 
Last edited:
Status
Not open for further replies.

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top