Students helping students, join us in improving Bored of Studies by donating and supporting future students!
d(lnsqrt(sin3x)) = 3/2 * cot3x * dxTry this one.
)
Not bad.d(lnsqrt(sin3x)) = 3/2 * cot3x * dx
2/3 * d(lnsqrt(sin3x)) = cot3x dx
Therefore integrand becomes 2/3 * sec^2 (lnsqrt(sin3x)) * d(lnsqrt(sin3x))
Integrate:
= 2/3 * tan(lnsqrt(sin3x)) + C
long time no integrals
here's a couple of good ones to try out!
\tan^{-1}\left ( x+\frac{2}{x} \right )}$ d$x \\  \\ \\ \int e^x\left ( \frac{1-x}{1+x^2} \right ) ^2$ d$x \\ \\ \\ \int \frac{\sin x - \cos x}{\sqrt{\sin(2x)}}$ d$x \\ \\ \\\int \left ( \frac{1}{\ln x}+\ln \left ( \ln x \right ) \right )$ d$x )
long time no integrals
here's a couple of good ones to try out!
\tan^{-1}\left ( x+\frac{2}{x} \right )}$ d$x \\  \\ \\ \int e^x\left ( \frac{1-x}{1+x^2} \right ) ^2$ d$x \\ \\ \\ \int \frac{\sin x - \cos x}{\sqrt{\sin(2x)}}$ d$x \\ \\ \\\int \left ( \frac{1}{\ln x}+\ln \left ( \ln x \right ) \right )$ d$x )
long time no integrals
here's a couple of good ones to try out!
\tan^{-1}\left ( x+\frac{2}{x} \right )}$ d$x \\  \\ \\ \int e^x\left ( \frac{1-x}{1+x^2} \right ) ^2$ d$x \\ \\ \\ \int \frac{\sin x - \cos x}{\sqrt{\sin(2x)}}$ d$x \\ \\ \\\int \left ( \frac{1}{\ln x}+\ln \left ( \ln x \right ) \right )$ d$x )
 
				