Makematics
Well-Known Member
Hi guys, I need help with an induction.
Use mathematical induction to prove that for all integers n≥1,
√1 + √2 + √3 + ... + √n ≤ [(4n+3)√n] / 6
So far I have done the easy bit...
Step 1: Prove true for n=1
LHS=1
RHS= 7/6
LHS≤RHS
Hence it is true for n=1.
Step 2: Assume true for n=k
i.e. Assume √1 + √2 + √3 + ... + √k ≤ [(4k+3)√k] / 6
Step 3: Prove true for n=k+1
i.e. Prove √1 + √2 + √3 + ... + √k + √(k+1) ≤ [(4k+7)√(k+1)] / 6
(BTW Those symbols are square roots)
Use mathematical induction to prove that for all integers n≥1,
√1 + √2 + √3 + ... + √n ≤ [(4n+3)√n] / 6
So far I have done the easy bit...
Step 1: Prove true for n=1
LHS=1
RHS= 7/6
LHS≤RHS
Hence it is true for n=1.
Step 2: Assume true for n=k
i.e. Assume √1 + √2 + √3 + ... + √k ≤ [(4k+3)√k] / 6
Step 3: Prove true for n=k+1
i.e. Prove √1 + √2 + √3 + ... + √k + √(k+1) ≤ [(4k+7)√(k+1)] / 6
(BTW Those symbols are square roots)