• Coming soon...BoS Trial exams
    Watch this space!

Integration of log (1 Viewer)

Coookies

Member
Joined
Sep 27, 2011
Messages
472
Gender
Female
HSC
2012
6. Find the exact area between curve y=1/x, x-axis and lines y=x and x=2 in first quadrant.

9. Find volume of solid formed when curve y=2/sqrt(2x-1) is rotated about x-axis from x=1 to x=5

10. Find area between curve y=lnx, y-axis and lines y=2 and y=4

11. Find exact volume of solid formed when curve y=lnx is rotated about y-axis from y=1 to y=3


I mostly need help with changing it into the right form to be integrated, so if you could help me with that, that would be awesome!:biggrin:
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,041
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ 6)~A=\int_{1}^{2} (x-\frac{1}{x})dx\\ ~\\ 7)~V=\pi \int_{1}^{5} \frac{4dx}{2x-1}\\ ~\\ 10)~y=\ln x \Rightarrow x=e^y\\ \therefore A=\int_{2}^{4}e^ydy\\ ~\\ 11)~$Similar to above...$\\ V=\pi \int_1^3 e^{2y}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ 6)~A=\int_{1}^{2} (x-\frac{1}{x})dx\\ ~\\ 7)~V=\pi \int_{1}^{5} \frac{4dx}{2x-1}\\ ~\\ 10)~y=\ln x \Rightarrow x=e^y\\ \therefore A=\int_{2}^{4}e^ydy\\ ~\\ 11)~$Similar to above...$\\ V=\pi \int_1^3 e^{2y}" title="\\ 6)~A=\int_{1}^{2} (x-\frac{1}{x})dx\\ ~\\ 7)~V=\pi \int_{1}^{5} \frac{4dx}{2x-1}\\ ~\\ 10)~y=\ln x \Rightarrow x=e^y\\ \therefore A=\int_{2}^{4}e^ydy\\ ~\\ 11)~$Similar to above...$\\ V=\pi \int_1^3 e^{2y}" /></a>

Any questions as to how I got those?
 

powlmao

Banned
Joined
Feb 17, 2011
Messages
3,970
Location
Hogwarts
Gender
Male
HSC
2012
My class hasn't done logs yet, but for the integral of x - 1/x can you just integrate normally and get it?
 

Aysce

Well-Known Member
Joined
Jun 24, 2011
Messages
2,393
Gender
Male
HSC
2012
My class hasn't done logs yet, but for the integral of x - 1/x can you just integrate normally and get it?
Yes, using the fact that when you integrate 1/x you will get ln(x) + c
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
My class hasn't done logs yet, but for the integral of x - 1/x can you just integrate normally and get it?
yes , so it becomes x^2/2 - lnx + c
 

powlmao

Banned
Joined
Feb 17, 2011
Messages
3,970
Location
Hogwarts
Gender
Male
HSC
2012
ZOMG i just re-read it and remember the standard integrals you get.

I am such a derp 1/x = inx + c
 

Coookies

Member
Joined
Sep 27, 2011
Messages
472
Gender
Female
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ 6)~A=\int_{1}^{2} (x-\frac{1}{x})dx\\ ~\\ 7)~V=\pi \int_{1}^{5} \frac{4dx}{2x-1}\\ ~\\ 10)~y=\ln x \Rightarrow x=e^y\\ \therefore A=\int_{2}^{4}e^ydy\\ ~\\ 11)~$Similar to above...$\\ V=\pi \int_1^3 e^{2y}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ 6)~A=\int_{1}^{2} (x-\frac{1}{x})dx\\ ~\\ 7)~V=\pi \int_{1}^{5} \frac{4dx}{2x-1}\\ ~\\ 10)~y=\ln x \Rightarrow x=e^y\\ \therefore A=\int_{2}^{4}e^ydy\\ ~\\ 11)~$Similar to above...$\\ V=\pi \int_1^3 e^{2y}" title="\\ 6)~A=\int_{1}^{2} (x-\frac{1}{x})dx\\ ~\\ 7)~V=\pi \int_{1}^{5} \frac{4dx}{2x-1}\\ ~\\ 10)~y=\ln x \Rightarrow x=e^y\\ \therefore A=\int_{2}^{4}e^ydy\\ ~\\ 11)~$Similar to above...$\\ V=\pi \int_1^3 e^{2y}" /></a>

Any questions as to how I got those?
Please explain 6 & 7 :)
& can you do Q11 for me please? I don't know how it gets to be pi/2 e^2(e^4-1)
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
<a href="http://www.codecogs.com/eqnedit.php?latex=\int e^{2y} ~ dy = \frac{e^{2y}}{2}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\int e^{2y} ~ dy = \frac{e^{2y}}{2}" title="\int e^{2y} ~ dy = \frac{e^{2y}}{2}" /></a>
 

Coookies

Member
Joined
Sep 27, 2011
Messages
472
Gender
Female
HSC
2012
For example, if its e^6 - e^2, and I take out the e^2 as a common factor, will the e^6 become e^4 or e^3?
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
<a href="http://www.codecogs.com/eqnedit.php?latex=V = \pi\int_{1}^{3}e^{2y}~dy = \pi\left [ \frac{e^{2y}}{2} \right ]_{1}^{3}\\\\ = \pi\left [\left [ \frac{e^{2(3)}}{2} \right ] - \left [\frac{e^{2(1)}}{2} \right ] \right ] = \pi \left [\frac{e^{6}}{2}- \frac{e^{2}}{2} \right ] \\\\ = \frac{\pi(e^6 - e^2)}{2} \\\\ = \frac{\pi*e^2(e^4 - 1)}{2} ~units^3" target="_blank"><img src="http://latex.codecogs.com/gif.latex?V = \pi\int_{1}^{3}e^{2y}~dy = \pi\left [ \frac{e^{2y}}{2} \right ]_{1}^{3}\\\\ = \pi\left [\left [ \frac{e^{2(3)}}{2} \right ] - \left [\frac{e^{2(1)}}{2} \right ] \right ] = \pi \left [\frac{e^{6}}{2}- \frac{e^{2}}{2} \right ] \\\\ = \frac{\pi(e^6 - e^2)}{2} \\\\ = \frac{\pi*e^2(e^4 - 1)}{2} ~units^3" title="V = \pi\int_{1}^{3}e^{2y}~dy = \pi\left [ \frac{e^{2y}}{2} \right ]_{1}^{3}\\\\ = \pi\left [\left [ \frac{e^{2(3)}}{2} \right ] - \left [\frac{e^{2(1)}}{2} \right ] \right ] = \pi \left [\frac{e^{6}}{2}- \frac{e^{2}}{2} \right ] \\\\ = \frac{\pi(e^6 - e^2)}{2} \\\\ = \frac{\pi*e^2(e^4 - 1)}{2} ~units^3" /></a>
 

Coookies

Member
Joined
Sep 27, 2011
Messages
472
Gender
Female
HSC
2012
Thanks :))

Can someone please show me the first few steps for Q 6 & 9?
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Integrate it and sub the values in .
 

Aysce

Well-Known Member
Joined
Jun 24, 2011
Messages
2,393
Gender
Male
HSC
2012
Integrate it and sub the values in .
No.

Do it graphically and calculate the area. Ie. Sketch the graph, draw out the lines y=x and x=2, find the area bounded by these lines.

Q6 only
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
<a href="http://www.codecogs.com/eqnedit.php?latex=6. ~ A = \int_{1}^{2} (x - \frac{1}{x}) ~dx = \left [\frac{x^2}{2} - \ln x \right ]_{1}^{2} \\\ = \left [\frac{(2)^2}{2} - \ln (2) \right ] - \left [\frac{(1)^2}{2} - \ln (1) \right ] \\\\ = \frac{4}{2} - \ln (2) - \frac{1}{2} ~, ~ \textup{NOTE}: \ln (1) = 0 \\\\= 2 - \ln (2) - \frac{1}{2} \\\\ = \frac{3}{2} - \ln (2)~ units^2" target="_blank"><img src="http://latex.codecogs.com/gif.latex?6. ~ A = \int_{1}^{2} (x - \frac{1}{x}) ~dx = \left [\frac{x^2}{2} - \ln x \right ]_{1}^{2} \\\ = \left [\frac{(2)^2}{2} - \ln (2) \right ] - \left [\frac{(1)^2}{2} - \ln (1) \right ] \\\\ = \frac{4}{2} - \ln (2) - \frac{1}{2} ~, ~ \textup{NOTE}: \ln (1) = 0 \\\\= 2 - \ln (2) - \frac{1}{2} \\\\ = \frac{3}{2} - \ln (2)~ units^2" title="6. ~ A = \int_{1}^{2} (x - \frac{1}{x}) ~dx = \left [\frac{x^2}{2} - \ln x \right ]_{1}^{2} \\\ = \left [\frac{(2)^2}{2} - \ln (2) \right ] - \left [\frac{(1)^2}{2} - \ln (1) \right ] \\\\ = \frac{4}{2} - \ln (2) - \frac{1}{2} ~, ~ \textup{NOTE}: \ln (1) = 0 \\\\= 2 - \ln (2) - \frac{1}{2} \\\\ = \frac{3}{2} - \ln (2)~ units^2" /></a>
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
<a href="http://www.codecogs.com/eqnedit.php?latex=9. V = \pi \int_{1}^{5} \frac{4}{2x - 1}~ dx = \pi \left [2\ln (2x -1) \right ]_{1}^{5} \\\\ = \pi\left [\left [ 2\ln(2(5) - 1) \right ] - \left [2\ln(2(1) - 1) \right ] \right ] \\\\ =\pi [2\ln(10 - 1) - 2\ln(2 -1)]\\\\ =\pi2\ln(9)\\\\ = \pi\ln(81) ~units^3" target="_blank"><img src="http://latex.codecogs.com/gif.latex?9. V = \pi \int_{1}^{5} \frac{4}{2x - 1}~ dx = \pi \left [2\ln (2x -1) \right ]_{1}^{5} \\\\ = \pi\left [\left [ 2\ln(2(5) - 1) \right ] - \left [2\ln(2(1) - 1) \right ] \right ] \\\\ =\pi [2\ln(10 - 1) - 2\ln(2 -1)]\\\\ =\pi2\ln(9)\\\\ = \pi\ln(81) ~units^3" title="9. V = \pi \int_{1}^{5} \frac{4}{2x - 1}~ dx = \pi \left [2\ln (2x -1) \right ]_{1}^{5} \\\\ = \pi\left [\left [ 2\ln(2(5) - 1) \right ] - \left [2\ln(2(1) - 1) \right ] \right ] \\\\ =\pi [2\ln(10 - 1) - 2\ln(2 -1)]\\\\ =\pi2\ln(9)\\\\ = \pi\ln(81) ~units^3" /></a>
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top