blackops23
Member
- Joined
- Dec 15, 2010
- Messages
- 428
- Gender
- Male
- HSC
- 2011
Hi guys, quick question here:
Q. Solve for x and y
arcsinx + arccosy = pi/12 --- (1)
arcsiny - arccosx = 7pi/12 ---- (2)
---------
My working (someone please point out what is wrong with it)
(1) + (2)
arcsinx - arccosx + (arcsiny + arccosy) = 2pi/3
arcsinx - arccosx = 2pi/3 - pi/2 = pi/6
arcsinx - (pi/2 - arcsinx) = pi/6
2arcsinx - pi/2 = pi/6
2arcsinx = pi/6 + pi/2 = 2pi/3
arcsinx = pi/3
So x = sqrt(3)/2
Sub this in (1)
So: arcsin(sqrt(3)/2) + arccosy = pi/12
pi/3 + arccosy = pi/12
arccosy = pi/12 - pi/3 = -pi/4
so y = 1/sqrt(2)
--------------
So now I had both values, x= sqrt(3)/2 and y=1/sqrt(2)
So i decided to sub the values in (1) to see if it works:
arcsinx + arccosy = pi/12
arcsin(sqrt(3)/2) + arccos(1/sqrt(2))
=pi/3 + pi/4
=7pi/12 --> not pi/12
subbing in (2)
arcsiny - arccosx = 7pi/12
arcsin(1/sqrt(2)) - arccos(sqrt(3)/2)
= pi/4 - pi/6
= pi/12 --> not 7pi/12
So what exactly did I do wrong?
Thanks, appreciate the help
Q. Solve for x and y
arcsinx + arccosy = pi/12 --- (1)
arcsiny - arccosx = 7pi/12 ---- (2)
---------
My working (someone please point out what is wrong with it)
(1) + (2)
arcsinx - arccosx + (arcsiny + arccosy) = 2pi/3
arcsinx - arccosx = 2pi/3 - pi/2 = pi/6
arcsinx - (pi/2 - arcsinx) = pi/6
2arcsinx - pi/2 = pi/6
2arcsinx = pi/6 + pi/2 = 2pi/3
arcsinx = pi/3
So x = sqrt(3)/2
Sub this in (1)
So: arcsin(sqrt(3)/2) + arccosy = pi/12
pi/3 + arccosy = pi/12
arccosy = pi/12 - pi/3 = -pi/4
so y = 1/sqrt(2)
--------------
So now I had both values, x= sqrt(3)/2 and y=1/sqrt(2)
So i decided to sub the values in (1) to see if it works:
arcsinx + arccosy = pi/12
arcsin(sqrt(3)/2) + arccos(1/sqrt(2))
=pi/3 + pi/4
=7pi/12 --> not pi/12
subbing in (2)
arcsiny - arccosx = 7pi/12
arcsin(1/sqrt(2)) - arccos(sqrt(3)/2)
= pi/4 - pi/6
= pi/12 --> not 7pi/12
So what exactly did I do wrong?
Thanks, appreciate the help
Last edited: