1. (For this question, I'm going to use a in place of alpha, for the sake of clarity.)
(a) Provided sin(a / 2) <> 0, show that cos(a / 2) = sin a / 2sin(a / 2)
Similarly, show that if sin(a / 2) and sin(a / 4) are both <> 0, cos(a / 2) * cos(a / 4) = sin a / 4sin(a / 4)
sin
a = sin[2 * (
a / 2)] = 2sin(
a / 2)cos(
a / 2)
So, sin
a / 2sin(
a / 2) = cos(
a / 2), on division by 2sin(
a / 2), as sin(
a / 2) <> 0 (given).
Then, noting that sin(
a / 2) = 2sin(
a / 4)cos(
a / 4), we have sin
a / 4sin(
a / 4)cos(
a / 4) = cos(
a / 2)
and so sin
a / 4sin(
a / 4) = cos(
a / 2)cos(
a / 4), on multiplication by cos(
a / 4)
(b) Prove by mathematical induction that if n is a positive integer, and sin(a / 2<sup>n</sup>) <> 0, then
cos(a / 2) * cos(a / 4) * ... * cos(a / 2<sup>n</sup>) = sin a / 2<sup>n</sup>sin(a / 2<sup>n</sup>)
Theorem: cos(
a / 2) * cos(
a / 4) * ... * cos(
a / 2<sup>n</sup>) = sin
a / 2<sup>n</sup>sin(
a / 2<sup>n</sup>), for n a positive integer, provided that sin(
a / 2<sup>n</sup>) <> 0
Proof: By induction on n:
A Put n = 1: LHS = cos(
a / 2) = sin
a / 2sin(
a / 2), from part (a)
= sin
a / 2<sup>1</sup>sin(
a / 2<sup>1</sup>) = RHS
So, the result is true for n = 1:
B Let k be a value of n for which the result is true. That is,
cos(
a / 2) * cos(
a / 4) * ... * cos(
a / 2<sup>k</sup>) = sin
a / 2<sup>k</sup>sin(
a / 2<sup>k</sup>) ______(**)
We must now prove the result for n = k + 1. That is, we must prove that
cos(
a / 2) * cos(
a / 4) * ... * cos(
a / 2<sup>k+1</sup>) = sin
a / 2<sup>k+1</sup>sin(
a / 2<sup>k+1</sup>)
Now, LHS = cos(
a / 2) * cos(
a / 4) * ... * cos(
a / 2<sup>k+1</sup>)
= [cos(
a / 2) * cos(
a / 4) * ... * cos(
a / 2<sup>k</sup>)] * cos(
a / 2<sup>k+1</sup>)
= [sin
a / 2<sup>k</sup>sin(
a / 2<sup>k</sup>)] * cos(
a / 2<sup>k+1</sup>), using the induction hypothesis (**)
= [sin
a / 2<sup>k</sup>sin(
a / 2<sup>k</sup>)] * sin(
a / 2<sup>k</sup>) / 2sin(
a / 2<sup>k+1</sup>), using @ =
a / 2<sup>k</sup> in cos(@/2) = sin@ / 2sin(@/2), from (a)
= sin
a / [2<sup>k</sup> * 2sin(
a / 2<sup>k+1</sup>)]
= sin
a / 2<sup>k+1</sup>sin(
a / 2<sup>k+1</sup>)
= RHS
So,
if the result is true for n = k,
then it follows that it is also true for n = k + 1
C It follows from
A and
B by mathematical induction that the result is true for all positive integers n
(c) Hence, deduce that a = sin a / {[cos(a / 2)] * [cos(a / 4)] * [cos(a / 8)] * ... } and that
pi = 1 / {(1/2) * sqrt(1/2) * sqrt[(1/2) + (1/2)sqrt(1/2)] * sqrt{(1/2) + (1/2)sqrt[(1/2) + (1/2)sqrt(1/2)]} * ...}
Rearranging the result from (b), we have 2<sup>n</sup>sin(
a / 2<sup>n</sup>) = sin
a / [cos(
a / 2) * cos(
a / 4) * ... * cos(
a / 2<sup>n</sup>)]
Now, as n --> +inf,
a / 2<sup>n</sup> --> 0<sup>+</sup> and so sin(
a / 2<sup>n</sup>) -->
a / 2<sup>n</sup>, as lim (x --> 0) (sin x) / x = 1
Thus, 2<sup>n</sup> * (
a / 2<sup>n</sup>) = sin
a / [cos(
a / 2) * cos(
a / 4) * cos(
a / 8) * ...]
and so
a = sin
a / [cos(
a / 2) * cos(
a / 4) * cos(
a / 8) * ...], as required
Now, taking
a = pi / 2, we get pi / 2 = sin(pi / 2) / [cos(pi / 4) * cos(pi / 8) * cos(pi / 16) * ...]
and dividing both sides by 1 / 2 gives pi = 1 / [(1 / 2) * cos(pi / 4) * cos(pi / 8) * cos(pi / 16) * ...] _____ (*)
Now, we know that cos(pi / 4) = 1 / sqrt(2) = sqrt(1 / 2), and also that cos<sup>2</sup>@ = (1 / 2) + (1 / 2) * cos2@.
So, putting @ = pi / 8, cos<sup>2</sup>(pi / 8) = (1 / 2) + (1 / 2) * cos(pi / 4) = (1 / 2) + (1 / 2) * sqrt(1 / 2)
Thus, cos(pi / 8) = sqrt[(1 / 2) + (1 / 2) * sqrt(1 / 2)]
And, putting @ = pi / 16, cos<sup>2</sup>(pi / 16) = (1 / 2) + (1 / 2) * cos(pi / 8)
= (1 / 2) + (1 / 2) * sqrt[(1 / 2) + (1 / 2) * sqrt(1 / 2)]
Thus, cos(pi / 16) = sqrt{(1 / 2) + (1 / 2) * sqrt[(1 / 2) + (1 / 2) * sqrt(1 / 2)]}
Substituting these into (*), we get:
pi = 1 / {(1/2) * sqrt(1/2) * sqrt[(1/2) + (1/2)sqrt(1/2)] * sqrt{(1/2) + (1/2)sqrt[(1/2) + (1/2)sqrt(1/2)]} * ...}, as required