It definitely seems to be something that most people forget. For this type of question it tends to not matter (in terms of marks), but being able to spot when a variable's domain has been restricted has saved me a few marks in exams.
(This might help with the locus problem I posted before...)
It definitely seems to be something that most people forget. For this type of question it tends to not matter (in terms of marks), but being able to spot when a variable's domain has been restricted has saved me a few marks in exams.
(This might help with the locus problem I posted before...)
glad someone noticed my question
make sure to use all the given equations.
eg: a and b represent their own complex numbers (on the lhs), try finding them;
its easier approaching it from the lhs to the rhs;without trying to take out any common factors immediately
Are you sure you wrote the question right? Cause a and b are real numbers (-1+-√2) not complex numbers in the form a+ib (b=/=0) (assuming that's what you intended it to be)
glad someone noticed my question
make sure to use all the given equations.
eg: a and b represent their own complex numbers (on the lhs), try finding them;
its easier approaching it from the lhs to the rhs;without trying to take out any common factors immediately
I used all the stuff you gave me and went from lhs -> rhs but I end up with crappy trig inside the ()^n that I haven't been able to transform into cosx - isinx to use with de moivre
Are you sure you wrote the question right? Cause a and b are real numbers (-1+-√2) not complex numbers in the form a+ib (b=/=0) (assuming that's what you intended it to be)
I used all the stuff you gave me and went from lhs -> rhs but I end up with crappy trig inside the ()^n that I haven't been able to transform into cosx - isinx to use with de moivre