• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

Strange inequality (1 Viewer)

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
2 ways I can see, here's the start. Try what you can.

- Harmonic Mean.

- Cross multiply so you have the cyclic sum on top and the product on the bottom.
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,435
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=given, x@plus;y@plus;z\geq 3\sqrt[3]{xyz}\\ let x=1/a,y=1/b,z=1/c\\ \therefore \frac{1}{a}@plus;\frac{1}{b}@plus;\frac{1}{c}\geq \frac{3}{\sqrt[3]{abc}}\\ now,~(x@plus;y@plus;z)/3\geq \sqrt[3]{xyz}\\ 1/3\geq \sqrt[3]{xyz}\\ 3/\sqrt[3]{xyz}\geq 9\\ put~together~to~yield~result." target="_blank"><img src="http://latex.codecogs.com/gif.latex?given, x+y+z\geq 3\sqrt[3]{xyz}\\ let x=1/a,y=1/b,z=1/c\\ \therefore \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{\sqrt[3]{abc}}\\ now,~(x+y+z)/3\geq \sqrt[3]{xyz}\\ 1/3\geq \sqrt[3]{xyz}\\ 3/\sqrt[3]{xyz}\geq 9\\ put~together~to~yield~result." title="given, x+y+z\geq 3\sqrt[3]{xyz}\\ let x=1/a,y=1/b,z=1/c\\ \therefore \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{\sqrt[3]{abc}}\\ now,~(x+y+z)/3\geq \sqrt[3]{xyz}\\ 1/3\geq \sqrt[3]{xyz}\\ 3/\sqrt[3]{xyz}\geq 9\\ put~together~to~yield~result." /></a>
oh yeh, and this was for all a,b,c>0 of course
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top