CriminalCrab
Member
- Joined
 - Mar 14, 2011
 
- Messages
 - 32
 
- Gender
 - Undisclosed
 
- HSC
 - 2012
 
Given that (n-1)Sigma(K=0) cos(K.theta) + i(n-1)Sigma(k=0) sin(K.theta) = (1-z^n)/(1-z).
1) Prove that:
(n-1)sigma(k=0) cos(K.theta) = (sin((n.theta)/2)cos(((n-1)theta)/s)) / (sin(theta/2)
and (n-1)sigma(k=0) sin(K.theta) = (sin((n.theta)/2)sin(((n-1)theta)/s)) / (sin(theta/2)
2)hence deduce that:
(n/2)sigma(k=1) sin (2Ktheta) + 2 (2n-1)sigma(j=3) sin (j.theta)
= (sin^2((n.theta)/2))sin[(n-1)theta])/(sin^2(theta/2))
sorry if its hard to read (i dont know how to make it look like math format)
note: the brackets before "sigma" is above it while the brackets after it is below the sigma sign.
	
		
			
		
		
	
								1) Prove that:
(n-1)sigma(k=0) cos(K.theta) = (sin((n.theta)/2)cos(((n-1)theta)/s)) / (sin(theta/2)
and (n-1)sigma(k=0) sin(K.theta) = (sin((n.theta)/2)sin(((n-1)theta)/s)) / (sin(theta/2)
2)hence deduce that:
(n/2)sigma(k=1) sin (2Ktheta) + 2 (2n-1)sigma(j=3) sin (j.theta)
= (sin^2((n.theta)/2))sin[(n-1)theta])/(sin^2(theta/2))
sorry if its hard to read (i dont know how to make it look like math format)
note: the brackets before "sigma" is above it while the brackets after it is below the sigma sign.
				